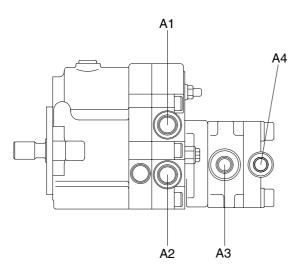
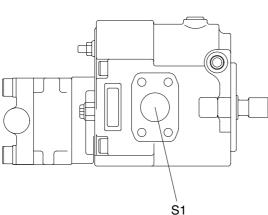
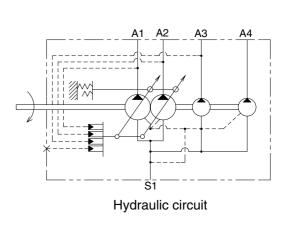
SECTION 2 STRUCTURE AND FUNCTION

Group	1 Pump Device ·····	2-1
Group	2 Main Control Valve	2-6
Group	3 Swing Device	2-35
Group	4 Travel Device	2-44
Group	5 RCV Lever ·····	2-55
Group	6 RCV Pedal	2-67

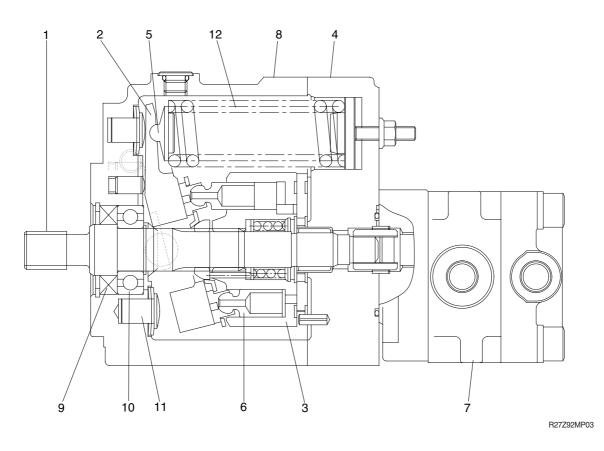

GROUP 1 HYDRAULIC PUMP


1. GENERAL


This is a variable displacement double-piston pump for discharge with equal displacements from one cylinder block. This pump is so compact as to appear a single pump though this is actually a double pump.

Because this pump has one swash plate, the tilting angle is the same for two pumps. Tilting of the pump changes in response to the total pressure of A1 + A2. Namely, the output is controlled to the constant value so that the relationship between the discharge pressure and flow rate Q becomes constant, (A1 + A2) * Q = Constant.

The third pump and pilot pump can be connected to the same shaft via a coupling.



R27Z92MP01

Description of the ports

Port	Port name	Port size		
S1	Suction port	SAE 1 1/4		
A1, A2	Discharge port	PF 1/2		
A3, A4	Discharge port	PF 3/8		

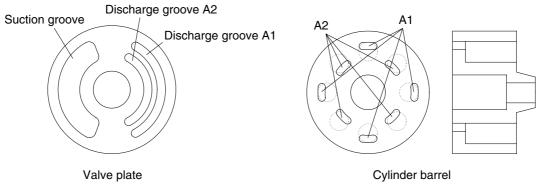
2. MAJOR COMPONENTS AND FUNCTIONS

- 1 Drive shaft assembly
- 2 Swash plate assembly
- 3 Cylinder barrel
- 4 Port plate assembly
- 5 Spring seat assembly
- 6 Piston

- 7 Gear pump
- 8 Housing
- 9 Oil seal
- 10 Bearing
- 11 Stopper assembly
- 12 Spring

This is a variable displacement double-piston pump for discharge with two equal displacements from one cylinder block. Because this is one cylinder barrel, there is only one suction port.

The oil is divided into two equal flows by the control plate in the cover and directed to two discharge ports provided in the cover.


The discharge pressure directed to the piston tilts the hanger by overcoming the spring force. Since the piston stroke changes according to the tilting angle of the hanger, the flow can be changed.

The simultaneous tilting angle constant-output control method is employed.

The pilot pump can be connected to the same shaft via a coupling.

1) PRINCIPLE OF OPERATION

(1) Function of pump

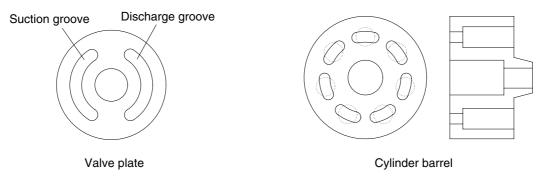
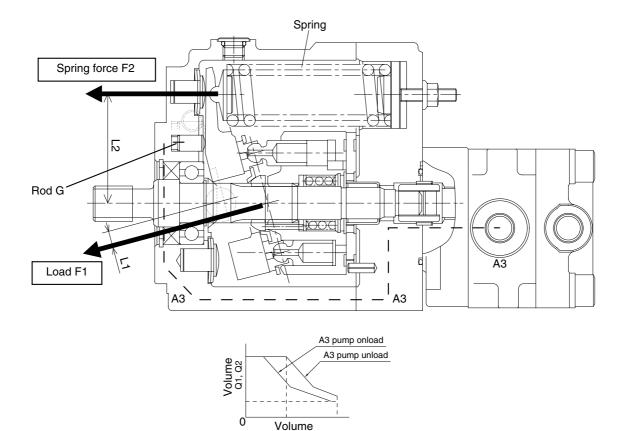


Figure 2 Working principle of Conventional type

R27Z92MP05


This pump adopts a new method using even numbered pistons to make functions of two same volume pumps available in one casing of a swash plate type variable volume piston pump.

Conventional valve plate has one suction groove and one discharge groove respectively as shown in figure 2. But this method adopts one common suction groove and two discharge grooves on the outer side (A1) and the inner side (A2) as shown in figure 1, the piston room in the cylinder barrel opens to either the outer side (A1) or the inner side (A2) discharge groove of the valve plate alternately, and the discharges are performed independently on the inner side and the outer side.

Since this model has even numbered pistons, same No of pistons open to the outer side and the inner side of the valve plate. All pistons are of same swash plate, so the discharges from the outer side (A1) and the inner side (A2) are equal.

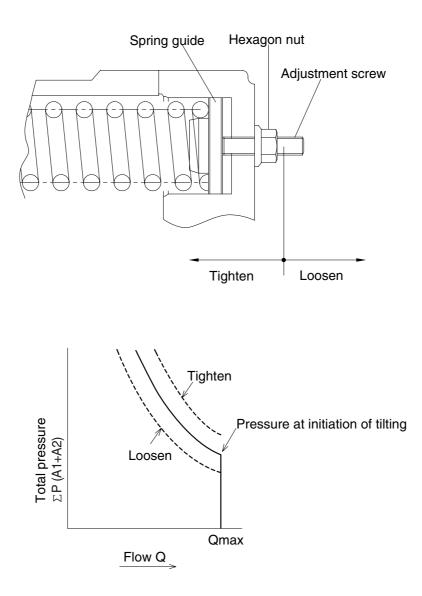
Also, since only one swash plate is used, the discharges from A1 and A2 ports changes equally when the swash plate angle of rake changes in variable controls. So, there is no difference between the two discharges.

2) CONTROL FUNCTIONS

A1+A2 A-Q characteristic

R27Z92MP04

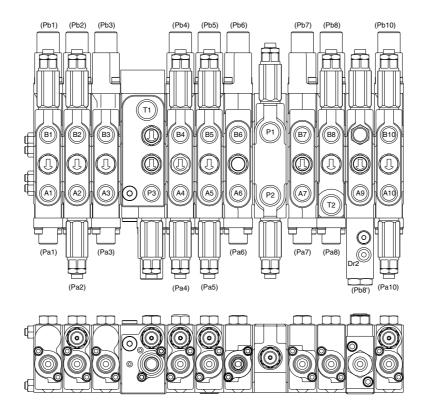
(1) Constant horse power variable structure


The pump output flow rate is variable depending on an angle of the swash plate which is controlled according to the pump output pressure. This control enables the pump consumption horse power to be sustained at the maximum. The tilt point of the swash plate is the balls located behind the swash plate. The load F1 from the pistons is in the direction shown in the illustration and generates a clockwise moment against the swash plate. Against this force the spring (force F2) is located in the opposite direction to keep the horse power constant and set at the appointed load. As the pressure increases, the above clockwise moment increases, and when it overcomes the counter-clockwise moment created by the spring force, the spring is sagged and the swash plate angle gets smaller. Then the output flow rate is reduced to keep the horse power constant. This prevents engine stall and the engine horse power can be utilized at the maximum.

(2) Power shift mode (Reduced horse power control by A3 pressure)

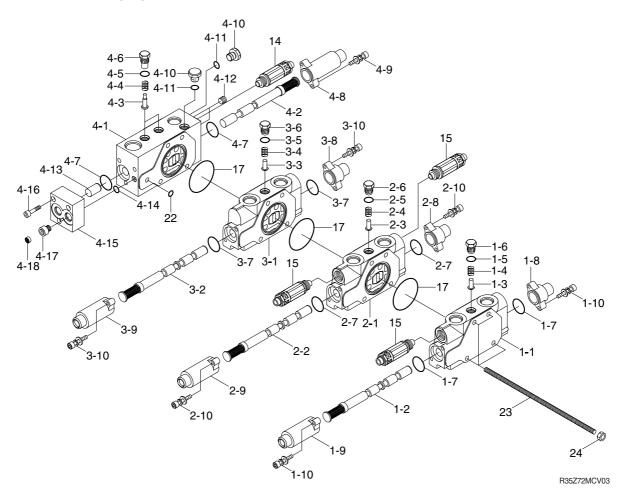
This control keeps the maximum value of the pump consumption horse power including the third pump (gear pump) constant. When the A3 (gear pump) pressure acts on the rod G, a clockwise moment proportion to the pressure acts on the swash plate and the A-Q characteristic shifts so that the total pump consumption horse power including the gear pump horse power is kept constant.

3) CONTROL / ADJUSTMENT PROCEDURE


- (1) Loosen the hexagonal nut.
- (2) Tighten or loosen the adjusting screw to set the power shifting line.

R27Z92MP07

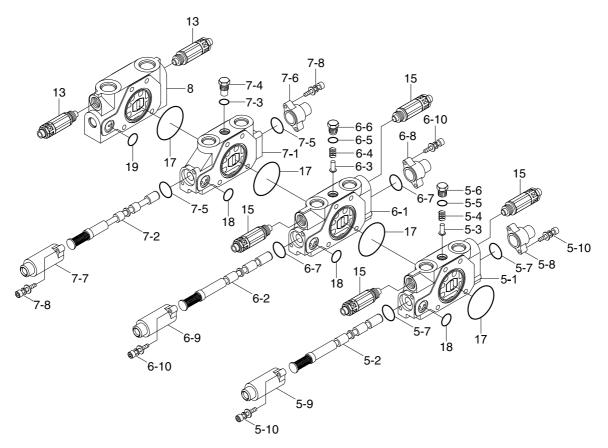
GROUP 2 MAIN CONTROL VALVE


1. OUTLINE

R27Z92MCV01

Mark	Port name	Port size	Tightening torque	Mark	Port name	Port size	Tightening torque	
P1	P1 (A1) pump port			A10	Bucket out port	PF	4.0~5.0	
P2	P2 (A2) pump port	PF	6~7	B10	Bucket in port	3/8	kgf ∙ m	
T1	Tank return port	1/2	kgf ∙ m	Pa1	Dozer down pilot port			
T2	Tank return port			Pb1	Dozer up pilot port			
P3	P3 (A3) pump port			Pa2	Boom swing (RH) pilot port			
A1	Dozer			Pb2	Boom swing (LH) pilot port			
B1	Dozer			Pa3	Swing (RH) pilot port			
A2	Boom swing (RH) port			Pb3	Swing (LH) pilot port			
B2	Boom swing (LH) port			Pa5	Arm out pilot port			
A3	Swing (LH) port			Pb5	Arm in pilot port	PF	2.5~3.0	
B3	Swing (RH) port			Pa6	Travel [LH/RR] pilot port	1/4	kgf ∙ m	
A4	Option port			Pb6	Travel [LH/FW] pilot port			
B4	Option port		4.0~5.0 kgf ⋅ m	PF 4.0~5.0 3/8 kgf · m	Pa7	Travel [RH/RR] pilot port		
A5	Arm out port	0/0		Pb7	Travel [RH/FW] pilot port			
B5	Arm in port			Pa8	Boom up pilot port			
A6	Travel [LH/RR] port			Pb8	Boom down pilot port			
B6	Travel [LH/FW] port				Pa10	Bucket out pilot port		
A7	Travel [RH/RR] port			Pb10	Bucket in pilot port			
B7	Travel [RH/FW] port							
A9	Boom up port]						
B8	Boom down port							

2. STRUCTURE (1/3)

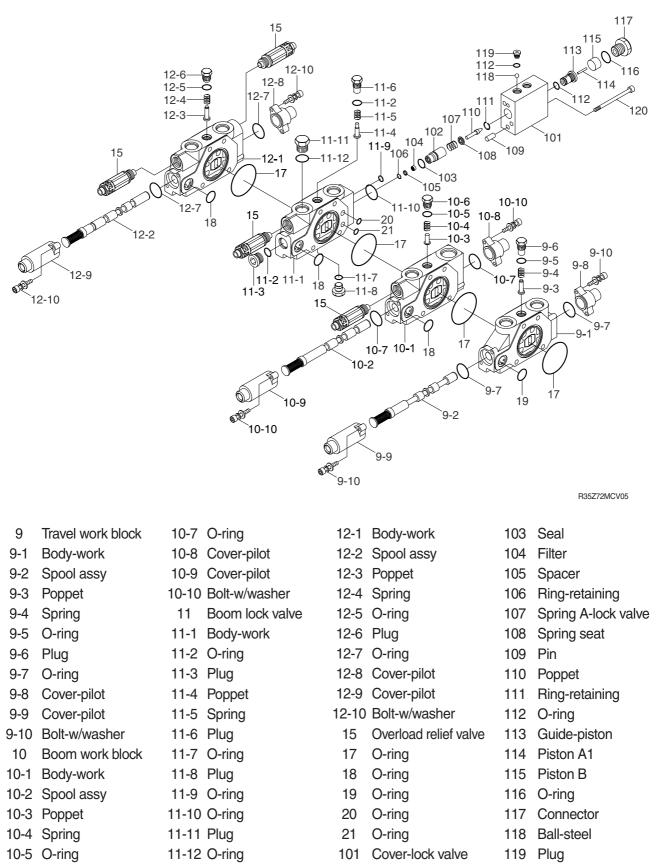


- 1 Dozer work block
- 1-1 Body-work
- 1-2 Spool assy
- 1-3 Poppet
- 1-4 Spring
- 1-5 O-ring
- 1-6 Plug
- 1-7 O-ring
- 1-8 Cover-pilot
- 1-9 Cover-pilot
- 1-10 Bolt-w/washer
- 2 Boom swing work block
- 2-1 Body-work
- 2-2 Spool assy
- 2-3 Poppet
- 2-4 Spring
- 2-5 O-ring
- 2-6 Plug
- 2-7 O-ring
- 2-8 Cover-pilot

- 2-9 Cover-pilot
- 2-10 Bolt-w/washer
- 3 Swing work block
- 3-1 Body-work
- 3-2 Spool assy
- 3-3 Poppet
- 3-4 Spring
- 3-5 O-ring
- 3-6 Plug
- 3-7 O-ring
- 3-8 Cover-pilot
- 3-9 Cover-pilot
- 3-10 Bolt-w/washer
- 4 Connecting block
- 4-1 Body-work
- 4-2 Spool assy
- 4-3 Poppet
- 4-4 Spring
- 4-5 O-ring

- 4-6 Plug
- 4-7 O-ring
- 4-8 Cover-pilot
- 4-9 Bolt-w/washer
- 4-10 Plug
- 4-11 O-ring
- 4-12 Plug
- 4-13 Piston
- 4-14 O-ring
- 4-15 Body-pilot
- 4-16 Bolt-w/washer
- 4-17 Orifice
- 4-18 Filter-coin type
- 14 Relief valve
- 15 Overload relief valve
- 17 O-ring
- 22 O-ring
- 23 Bolt-tie
- 24 Nut-hex

STRUCTURE (2/3)

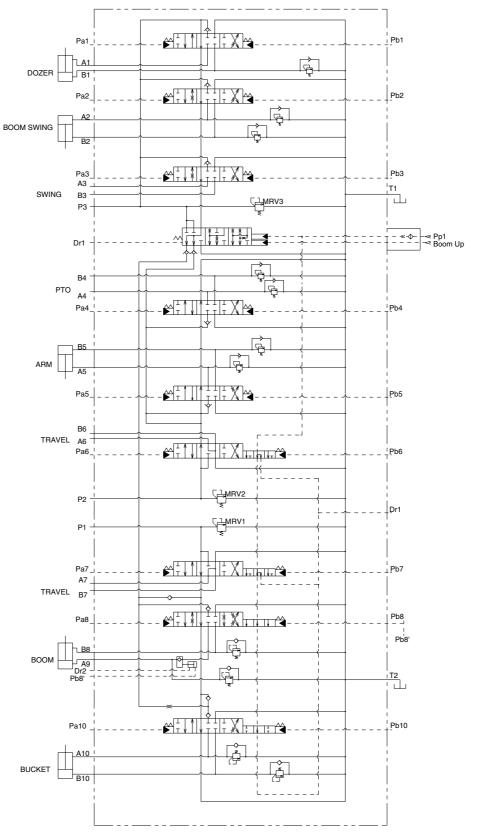

R27Z92MCV04

- 5 PTO work block
- 5-1 Body-work
- 5-2 Spool assy
- 5-3 Poppet
- 5-4 Spring
- 5-5 O-ring
- 5-6 Plug
- 5-7 O-ring
- 5-8 Cover-pilot
- 5-9 Cover-pilot
- 5-10 Bolt-w/washer
- 6 Arm work block
- 6-1 Body-work

- 6-2 Spool assy
- 6-3 Poppet
- 6-4 Spring
- 6-5 O-ring
- 6-6 Plug
- 6-7 O-ring
- 6-8 Cover-pilot
- 6-9 Cover-pilot
- 6-10 Bol-w/washer
- 7 Travel work block
- 7-1 Body work
- 7-2 Spool assy
- 7-3 O-ring

- 7-4 Plug
- 7-5 O-ring
- 7-6 Cover-pilot
- 7-7 Cover-pilot
- 7-8 Bolt-w/washer
- 8 Inlet work block
- 13 Relief valve
- 15 Overload relief valve
- 17 O-ring
- 18 O-ring
- 19 O-ring

STRUCTURE (3/3)

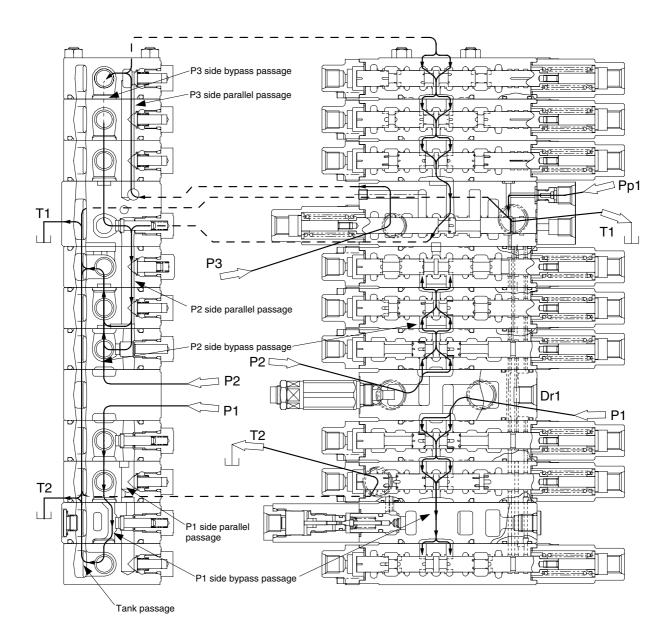

12 Bucket work block

10-6 Plug

102 Lock valve

120 Bolt-hexagon

3. HYDRAULIC CIRCUIT



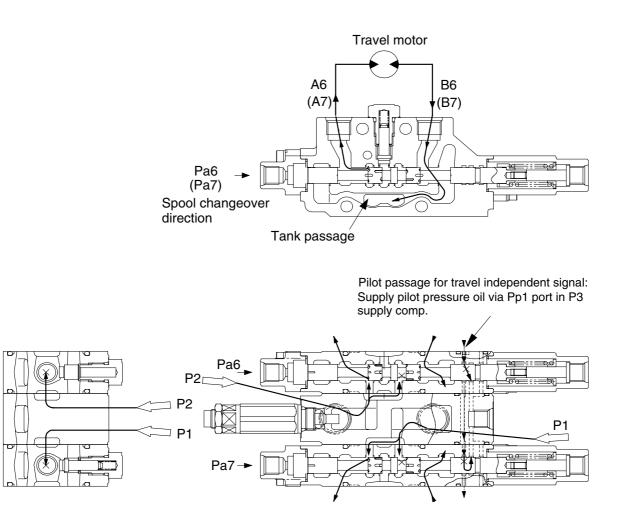
R27Z92MCV02

4. FUNCTION

- 1) IN NEUTRAL (When all spools are in neutral position)
- P1 : The oil discharged from the hydraulic pump flows into control valve P1 port, and then flows through P1 and P2 supply body the P1 side travel spool. The oil flows through the bypass passage in the direction of travel → boom → bucket spool, and then flows from the bypass passage to the tank passage in the bucket section.
- P2 : The oil discharged for the hydraulic pump flows into the control valve from P2 port, and then flows through P1 and P2 supply body to the P2 side travel spool. The oil flows through the bypass passage in the direction of travel → arm → PTO spool, and the flows from the bypass passage to the tank passage in the PTO section.
- P3 : The oil discharged from the hydraulic pump flows into the control valve from P3 port, and then flows through the parallel passage of dozer, boom swing, and swing. The oil that has followed into the parallel passage flows through the bypass passage in the direction of dozer → Boom swing → swing spool, the connecting spool land, the P2 side parallel passage, the bypass passage from arm to PTO spool, the bypass passage in the PTO section, and then to the tank passage.
- * Since each line (P1, P2, P3) is supplied with oil from the pump, the section is operatable; therefore, do not operate the control valve except the working time.
 - \cdot P1 line : Travel, boom, bucket
 - \cdot P2 line : Travel, arm, PTO
 - · P3 line : Dozer, boom swing, arm, PTO, boom (up only)
- Pp1 : When Pp1 port is applied with pilot pressure, the oil flows into the travel independent passage via an orifice.

With the spool in neutral, the oil flows into Dr1 port provided in the P1 and P2 supply body.

Hydraulic oil flow in neutral


2) TRAVEL OPERATION

For the travel operation, both Pa pressurization and Pb pressurization are the same on operation so that only Pa pressurization is explained as follows.

When left (right) travel reverse is operated, the secondary pressure from the remote control valve is applied to Pa6 [Pa7] port to change over the travel spool. The oil flowed from P2 [P1] port flows through the supply body into the P2 [P1] side bypass passage. The oil flowed into the P2 [P1] side bypass passage flows through A6 [A7] port that has been opened by the spool changeover to the travel motor. On the other hand, the oil returned from the travel motor flows into the control valve from B6 [B7] port and then to the tank passage has been opened after the spool changeover.

The oil flowed from P_P1 port flows through the orifice passage provided in the P3 supply section into the travel independent signal passage.

Although the travel independent passage (see page 2-14) in the travel section that has been opened during neutral is blocked after the both travel spools changeover, the travel independent signal passage is connected to the drain port via the bucket section Accordingly, when the bucket section has not changed over, the connecting spool in the P3 supply section does not change over because the pressure in the travel independent signal passage is equal to the drain pressure.

Operation during travel(Forward)

3) BOOM OPERATION

Boom up operation

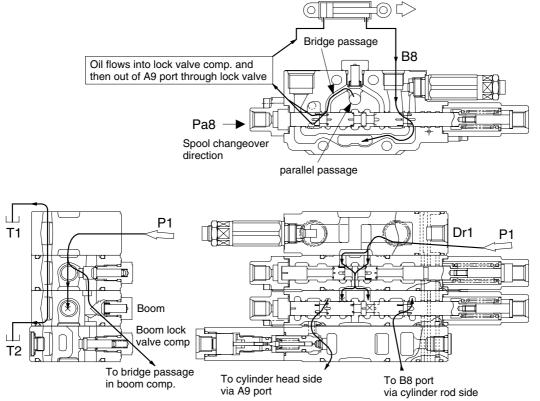
When the boom up operation is carried out, the secondary pressure from the remote control valve is applied to Pa8 port to change over the boom spool. Since Pa8 port is connected to boom up port through the piping, the pressure oil supplied to boom up port changes over the connecting spool through the connecting piston in the P3 supply section

Also, since the P1 side bypass passage is shut off at the boom section after the boom spool changeover, the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

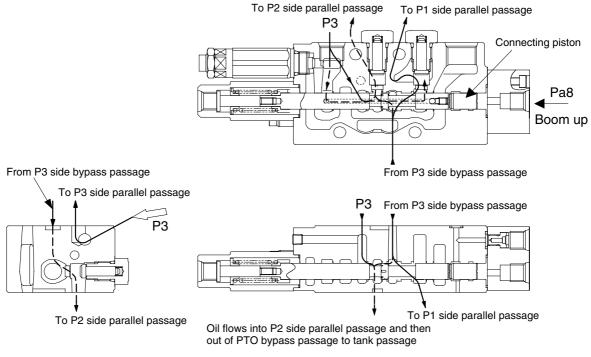
On the other side, after the connecting spool changeover the oil flowed into P3 port.

- ① Flows through the internal passage in connecting spool and the check valve in the P3 supply section into the P1 side parallel passage.
- 2 The oil flows through the P3 side parallel passage and P3 side bypass passage and then:
 - a. Flows through the check valve in the P3 supply section into the P1 side parallel passage.
 - b. Some oil flows through the orifice passage provided in the connecting spool and the check valve in the P3 supply section into the P2 side parallel passage.

The oil flowed into the P1 side parallel passage is connected with the oil from P1 pump.


The oil flowed into the P2 side parallel passage flows through the bypass passages in the arm section and PTO section to the tank passage.

Since the passage connected to the boom lock valve and the bridge passage are opened after the boom spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the boom section and the bridge passage into the boom lock valve section


The oil flowed into the boom lock valve section opens the lock valve (free flow condition), flows into A9 port, and the to the head side of the boom cylinder.

On the other hand, the oil returned from the rod side of the boom cylinder flows into B8 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the boom cylinder extends to raise the boom.

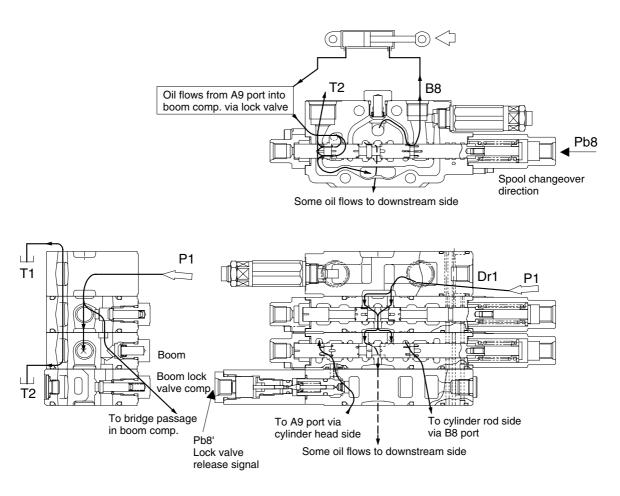
P1 side circuit

P3 side (Connecting side) circuit

Boom up operation

Boom down operation

When the boom down operation is carried out, the secondary pressure from the remote control valve is applied to Pb8 port to change over the boom spool.


Since Pb8 port is connected to Pb8' port through the piping, the pressure is also applied to pb8' port (Boom lock valve release port) to release the boom lock valve.

(For the explanation of boom lock valve operation, see pages 2-19, 20)

Since the bypass passage is shut off at the boom section after the spool changeover (some oil flows through the orifice passage provided in the boom spool's bypass passage to the downstream side of the bypass passage), the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

Also, since a passage between B8 port and bridge passage is opened with the spool's notch after the spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the boom section into B8 port via the bridge passage and then into the rod side of the boom cylinder.

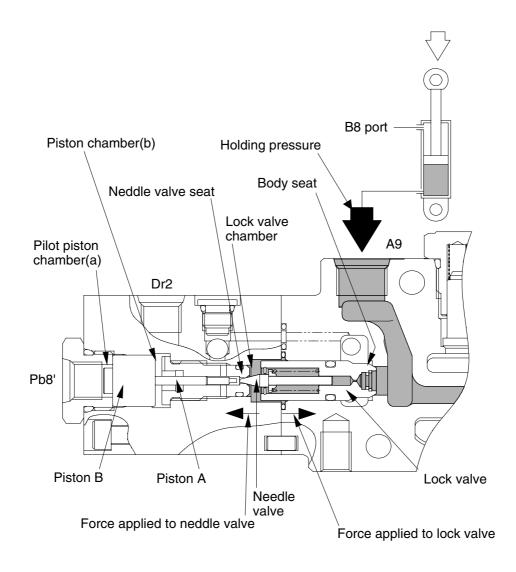
On the other side, the oil returned from the head side of the boom cylinder flows into A9 port to the tank passage that has been opened with the spool's notch after the spool changeover through the boom lock valve that has been released by Pb8' port pressure. Then, the boom cylinder retracts to lower the boom.

Boom down operation

4) Operation of boom lock valve

(1) Holding

In the boom spool neutral condition,

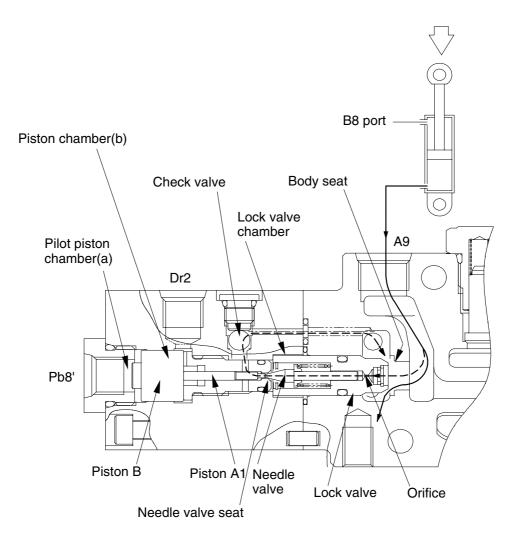

- The pilot piston chamber (a) is connected to the drain passage through the pilot port (Pb8') for releasing the boom lock valve.
- \cdot The piston chamber (b) is also connected to the drain passage through the drain port (Dr2).

Therefore, the piston (B) maintains the condition shown in the figure.

The boom cylinder holding pressure (shown in half-tone dot meshing) is applied to the lock valve chamber as shown in the figure to :

- \cdot Press the needle valve against the needle valve seat.
- · Press the lock valve against the body seat.

Then, oil leakage from the boom cylinder head side is prevented to stop the movement of the boom cylinder due to leakage.


Operation of boom lock valve (holding)

(2) Release

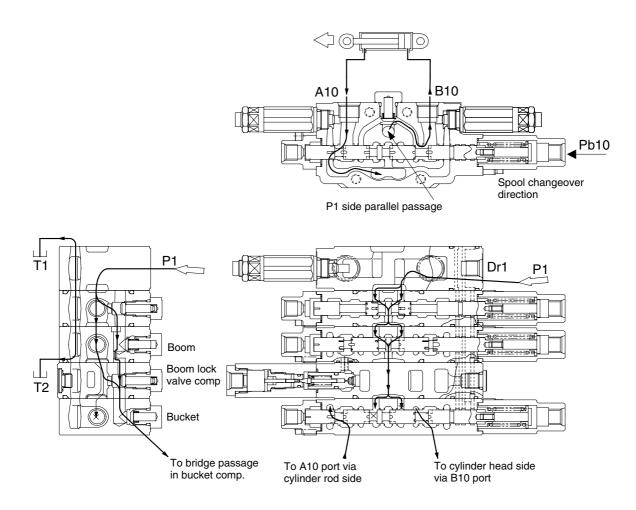
When the pilot pressure is applied to the pilot port (Pb8') for boom lock valve release, the piston (B) moves rightward to open the needle valve through the piston (A1).

Then, the oil returned from the boom cylinder flows through the passage in the direction of lock valve's orifice \rightarrow lock valve chamber \rightarrow needle valve seat \rightarrow check valve into the lock valve's downstream side chamber (boom section).

When the lock valve's downstream chamber is connected to the tank passage after the boom spool changeover and the needle valve is released, the pressure in the lock valve chamber decreases to open the lock valve by the oil returned from the boom cylinder. The returned oil flows into the tank passage with the boom spool's notch to operate the cylinder.

Operation of boom lock valve (release)

5) BUCKET OPERATION


Bucket in operation

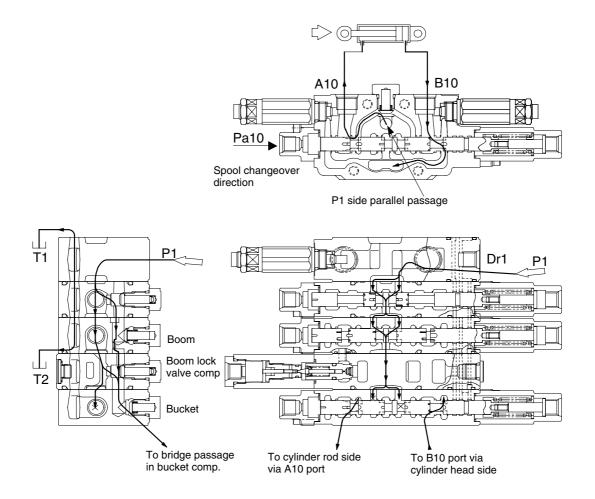
When the bucket in operation is carried out, the secondary pressure from the remote control valve flows into Pb10 port to change over the bucket spool.

Since the P1 side bypass passage is shut off at the bucket section after the bucket spool changeover, the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

Also, since a passage between B10 port and the bridge passage is opened after the spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the bucket section into B10 port via the bridge passage and then the head side of the bucket cylinder.

On the other hand, the oil returned from the rod side of the bucket cylinder flows into A10 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the bucket cylinder extends to make the bucket in.

Bucket in operation


Bucket out operation

When the bucket out operation is carried out, the secondary pressure from the remote control valve flows into Pa10 port to change over the bucket spool.

Since the P1 side bypass passage is shut off at the bucket section after the bucket spool changeover, the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

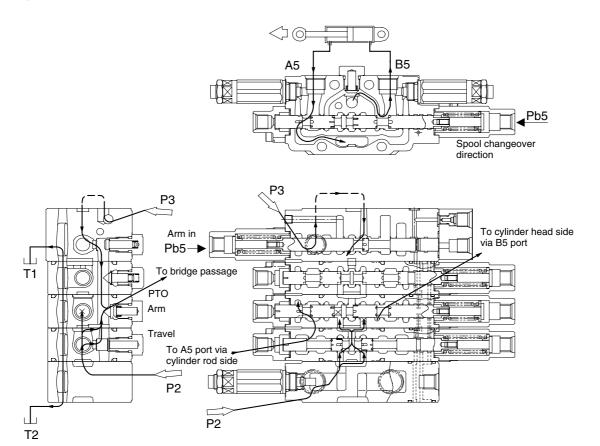
Also, since a passage between A10 port and the bridge passage is opened after the spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the bucket section into A10 port via the bridge passage and then the head side of the bucket cylinder.

On the other hand, the oil returned from the head side of the bucket cylinder flows into B10 port to the tank passage that has opened after the spool changeover.

Bucket out operation

6) ARM OPERATION

Arm in operation


When the arm in operation is carried out, the secondary pressure from the remote control valve is applied to Pb5 port to change over the arm spool. The secondary pressure is also applied to the pilot chamber (arm in port) on the connecting section spring chamber side that has been connected through the piping. Therefore, when the operation is carried out together with the boom up operation at the same time, the connecting spool is hard to change over against the pilot pressure for arm in operation.

Since the P2 port bypass passage is shut off at the arm section after the arm spool change over, the oil flowed from P2 port flows through the travel section and a passage between travel section and arm section into the P2 side parallel passage.

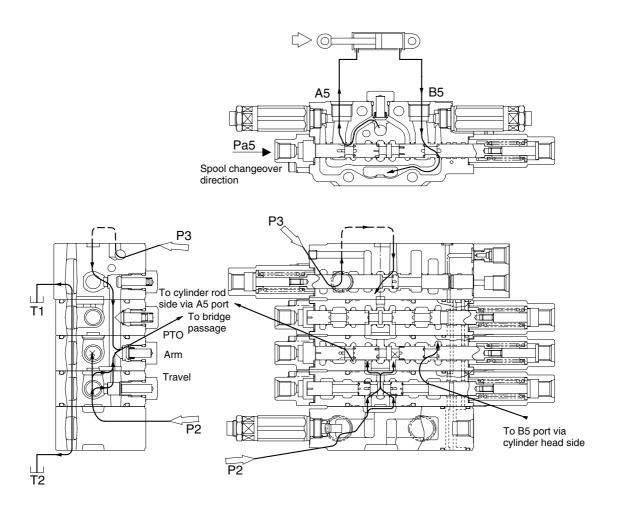
Also, since the oil flowed from P3 port flows through the direction of dozer \rightarrow boom swing \rightarrow swing section and then into the P2 side parallel passage via the check valve in the P3 supply section, the connecting flow of P2 pump and P3 pump is supplied to the P2 side parallel passage. [Although the P3 side bypass passage is also connected to the P1 side parallel passage through the check valve in the P3 section, there is no oil flow into the P1 side as long as the P1 side sections (boom , bucket) are not operated.]

Since a passage between B5 port and the bridge passage is opened after the spool changeover, the oil flowed into the P2 side parallel passage flows through the load check valve in the arm section into B5 port via the bridge passage and then into the head side of the arm cylinder.

On the other hand, the oil returned from the rod side of the arm cylinder flows into A5 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the arm cylinder extends to make the arm in.

Arm in operation

Arm out operation


When the arm out operation is carried out, the secondary pressure from the remote control valve is applied to Pa5 port to change over the arm spool.

Since the P2 side bypass passage is shut off at the arm section after the arm spool changeover, the oil flowed from P2 port flows through the travel section and a passage between travel section and arm section into the P2 side parallel passage.

Also, since the oil flowed from P3 port flows through the direction of dozer \rightarrow boom swing \rightarrow swing section and then into the P2 side parallel passage via the check valve in the P3 supply section, the connecting flow of P2 pump and P3 pump is supplied to the P2 side parallel passage. [Although the P3 side bypass passage is also connected to the P1 side parallel passage through the check valve in the P3 section, there is no oil flow into the P1 side as long as the P1 side sections (boom , bucket) are not operated.]

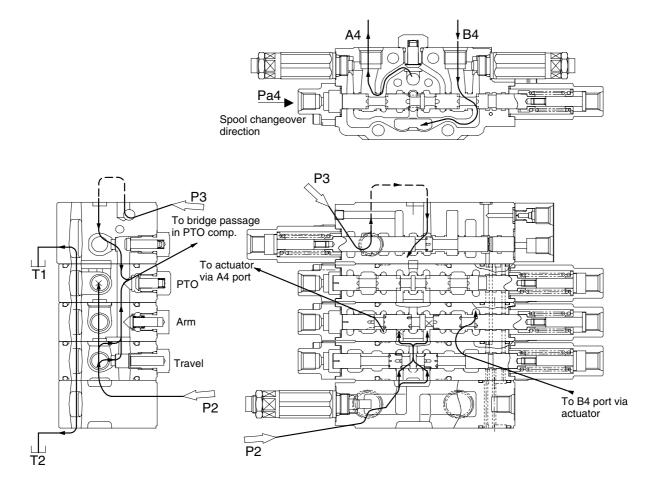
Since a passage between A5 port and the bridge passage is opened after the spool changeover, the oil flowed into the P2 side parallel passage flows through the load check valve in the arm section into A5 port via the bridge passage and then into the rod side of the arm cylinder.

On the other hand, the oil returned from the head side of the arm cylinder flows into B5 port to the tank passage that has opened after the spool changeover. Then, the arm cylinder retracts to make the arm out.

Arm out operation

7) PTO OPERATION

For the PTO operation, both Pa pressurization and Pb pressurization are the same on operation so that only Pa pressurization is explained as follows.


When the PTO operation (Pa4 pressurization) is carried out, the secondary pressure from the remote control valve is applied to Pa4 port to change over the PTO spool. Since the P2 side bypass passage is shut off at the PTO section after the PTO spool changeover, the oil flowed from P2 port flows through the travel section and a passage between travel section and arm section into the P2 side parallel passage.

Also, since the oil flowed from P3 port flows through the direction of dozer \rightarrow boom swing \rightarrow swing section and then into the P2 side parallel passage via the check valve in the P3 supply section, the connecting flow of P2 pump and P3 pump is supplied to the P2 parallel passage.

[Although the P3 side bypass passage is also connected to the P1 side parallel passage through the check valve in the P3 section, there is no oil flow into the P1 side as long as the P1 side sections (boom, bucket) are not operated.]

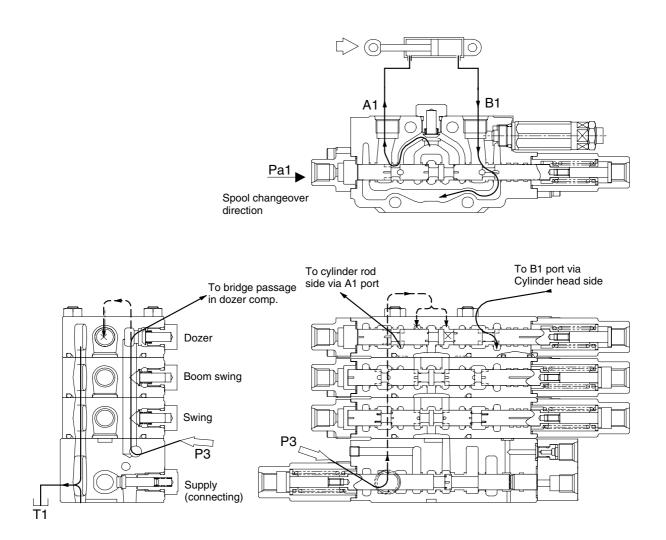
Since a passage between A4 port and the bridge passage is opened after the spool changeover, the oil flowed into the P2 side parallel passage flows through the load check valve in the PTO section into A4 port via the bridge passage and then into the actuator for PTO.

On the other hand, the oil returned from actuator for PTO flows into B4 port to the tank passage that has opened after the spool changeover.

PTO operation

R27Z92MCV21

8) DOZER OPERATION


Dozer up operation

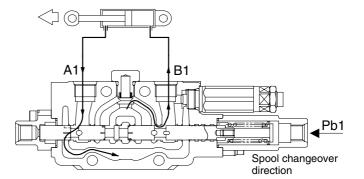
When the dozer up operation is carried out, the secondary pressure from the remote control valve is applied to Pa1 port to change over the dozer spool.

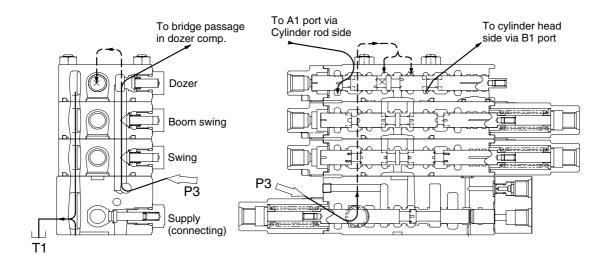
Since the P3 side bypass passage is shut off at the dozer section after the dozer spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into A1 port through the load check valve in the dozer section and the bridge passage since A1 port and the bridge passage have been opened after the spool changeover and then into the rod side of the dozer cylinder.

On the other hand, the oil returned from the head side of the dozer cylinder flows into B1 port to the tank passage that has opened after the spool changeover.

Then, the dozer cylinder retracts to raise the dozer.

Dozer up operation


Dozer down operation

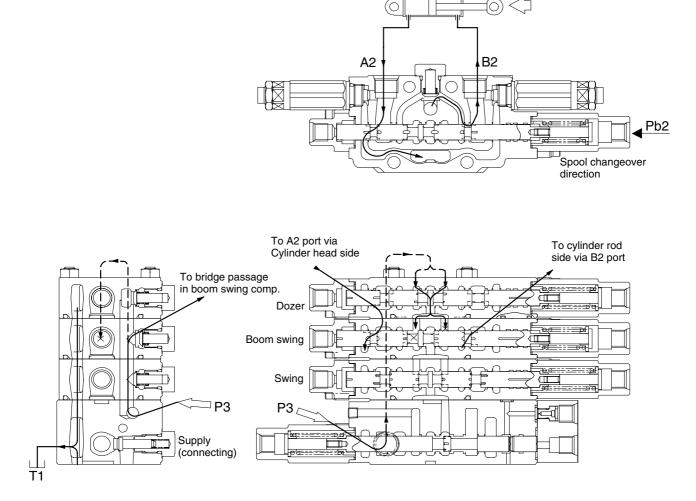

When the dozer down operation is carried out, the secondary pressure from the remote control valve is applied to Pb1 port to change over the dozer spool.

Since the P3 side bypass passage is shut off at the dozer section after the dozer spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into B1 port through the load check valve in the dozer section and the bridge passage since B1 port and the bridge passage have been opened after the spool changeover and then into the head side of the dozer cylinder.

On the other hand, the oil returned from the rod side of the dozer cylinder flows into A1 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the dozer cylinder extends to lower the dozer.

Dozer down operation


9) BOOM SWING OPERATION

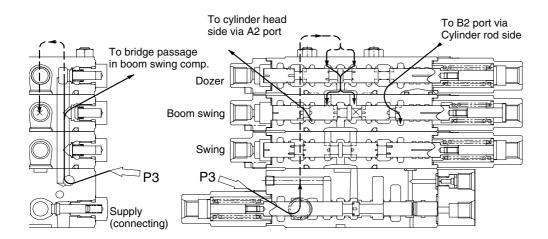
Boom left swing operation

When the boom left swing operation is carried out, the secondary pressure from the remote control valve is applied to Pb2 port to change over the boom swing spool.

Since the P3 side bypass passage is shut off at the boom swing section after the boom swing spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into B2 port through the load check valve in the boom swing section and the bridge passage since B2 port and the bridge passage have been opened after the spool changeover and then into the rod side of the boom swing cylinder.

On the other hand, the oil returned from the head side of the boom swing cylinder flows into A2 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the boom swing cylinder retracts to swing the attachment left.

Boom left swing operation


Boom right swing operation

When the boom right swing operation is carried out, the secondary pressure from the remote control valve is applied to Pa2 port to change over the boom swing spool.

Since the P3 side bypass passage is shut off at the boom swing section after the boom swing spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into A2 port through the load check valve in the boom swing section and the bridge passage since A2 port and the bridge passage have been opened after the spool changeover and then into the head side of the boom swing cylinder.

On the other hand, the oil returned from the rod side of the boom swing cylinder flows into B2 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the boom swing cylinder extends to swing the attachment right.

Boom right swing operation

(10) SWING OPERATION

For the swing operation, both Pa pressurization and Pb pressurization are the same on operation so that only Pa pressurization is explained as follows.

When the right swing operation is carried out, the secondary pressure from the remote control valve is applied to Pa3 port to change over the swing spool.

Since the P3 side bypass passage is shut off at the swing section after the swing spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into A3 port through the load check valve in the swing section and the bridge passage since A3 port and the bridge passage have been opened after the spool changeover and then into the swing motor.

On the other hand, the oil returned from the swing motor flows into B3 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the upper swing body swings right.

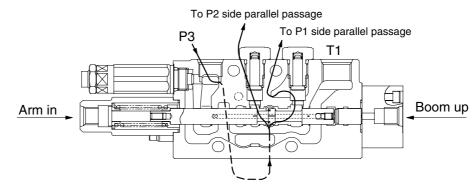
Right swing operation

(11) COMBINED CONTROL OPERATION ①

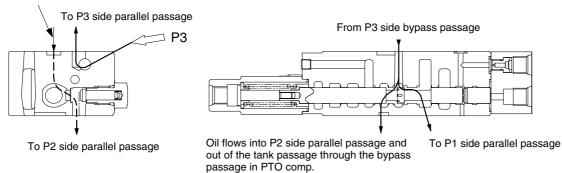
Boom up + Arm in + bucket

When the above combined control is carried out, the secondary pressure from the remote control valve is applied to each spool to change over them. Since the secondary pressure for arm in operation is also applied to the pilot chamber on the connecting section spring chamber side according to the piping, the connecting spool operates against the secondary pressure developed from boom up operation and arm in operation.

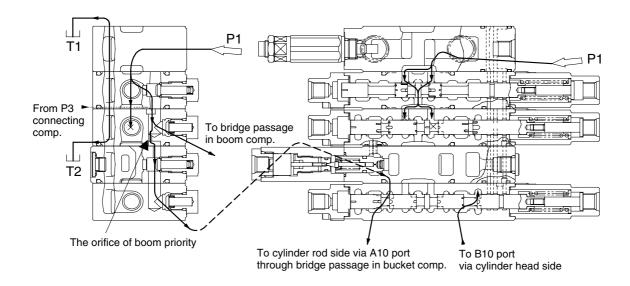
(Boom up operation secondary pressure - Arm in operation secondary pressure = connecting spool changeover pressure)


When all the above combined operations are carried out in full lever operation (full changeover), the oil supplied from P1 pump is supplied to the boom and bucket and the oil from P2 pump to the arm. Since the connecting spool changeover pressure becomes "0" as mentioned above, the connecting spool cannot change over and the oil from P3 pump flows to the P1 and P2 side parallel passages through the connecting section. Accordingly, much oil flows to the arm side normally because of its low working load.

In this condition, since gradually restricting the arm in operation (returning the lever) causes the secondary pressure for arm in operation to decrease, the connecting spool changeover pressure to increase, the connecting spool to start changing over, and the passage to the arm side to be narrowed, the oil supplied from P3 pump flows abundantly into the P1 side (Boom, bucket).


As mentioned above, the oil supplied from P3 pump flows suitably into each attachment according to the control input during the above combined control, resulting in a well-balanced and efficient working speed.

Besides, since the oil flow to the bucket whose working load is less than the boom is restricted with an orifice (the orifice of boom priority) provided before the bucket section in the P1 side parallel passage, much oil flows into the boom section. As a result, the working speed balance between both attachments is maintained during the combined operation of boom and bucket.


P3 side (connecting side) circuit

From P3 side bypass passage

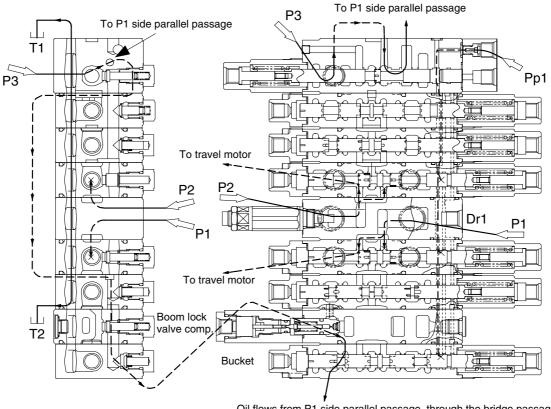
P1 side circuit (the orifice of boom priority)

Oil flow during combined operation

(12) COMBINED CONTROL OPERATION ②

Both travels + bucket

When the both travels operation is carried out together with the bucket operation at the same time, the oil flowed from Pp1 port flows through the orifice passage and into the travel independent signal passage; both travels and the bucket spool changeover make a passage to the drain port shut off.


Then, the travel independent passage becomes the same pressure as Pp1 port pressure (pilot primary pressure).

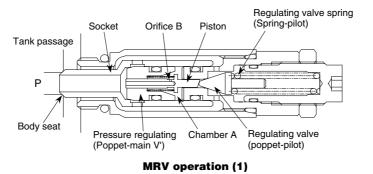
When the travel independent passage becomes Pp1 pressure, the Pp1 pressure is applied to the connecting spool to change over the connecting spool.

Since the bypass passage from P3 to P2 side, which is a passage to the tank, in restricted, the oil from P3 side flows into the P1 side parallel passage that is connected through a check valve.

With his circuit arrangement, the bucket section is supplied with pressure oil from P3 during both travels operation, the simultaneous operation becomes possible.

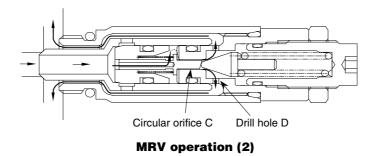
Besides, since each of P1 and P2 is used independently during both travels and only P3 is used for bucket operation, stable travel is possible to continue even if there is change in the bucket load.

Oil flows from P1 side parallel passage, through the bridge passage in the bucket comp., and in to the cylinder rod side via A10 port.

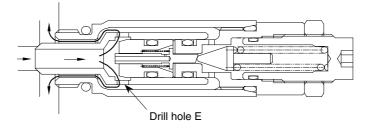

Travel independence operation

(13) MAIN AND PORT RELIEF VALVE OPERATION

Main relief valve operation


Main relief valves (MRV) are different in the uses for P1/P2 and P3; however, their structures and operation are the same.

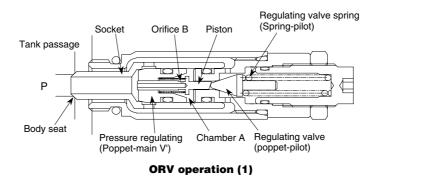
① Pressure oil flows through the inside of the piston built in the pressure regulating valve (poppetmain V') and the orifice B and then into the internal chamber A until it is filled up. The filled up pressure causes both of the pressure regulating valve and the socket and body seat to be seated securely.


R35Z72MCV29

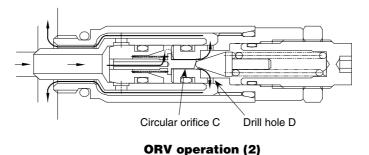
② When the oil pressure at port P increases up to the setting pressure of regulating valve spring, the pressure oil is applied to the regulating valve via the piston to open the regulating valve. Then, the pressure oil flows through a passage in the direction of piston inside → orifice B → chamber A → circular orifice C → Drill hole D and the external of socket and then into the tank passage.

R35Z72MCV30

③ Since the pressure inside the chamber A decreases when the regulating valve is opened, which causes the pressure regulating valve to open to let the pressure oil port P flows into the tank passage through drill hole E.

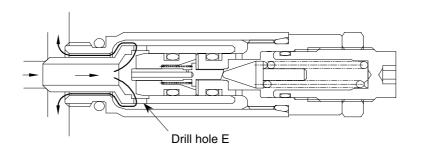

R35Z72MCV31

④ Also, since the regulating valve is pressed to the seat by regulating valve spring when the pressure at port P decreases below the setting pressure of regulating valve spring, the pressure inside chamber A becomes the same as the pressure at port P to cause the pressure regulating valve to be pressed to the seat, resulting in the original condition (①).


MRV operation (3)

Overload relief valve (ORV) operation ①

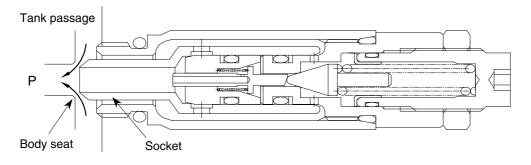
① Pressure oil flows through the inside of the piston built in the pressure regulating valve (poppetmain V') and the orifice B and then into the internal chamber A until it is filled up. The filled up pressure causes both of the pressure regulating valve and socket and body seat to be seated securely.


② When the oil pressure at port P increases up to the setting pressure of regulating valve spring, the pressure oil is applied to the regulating valve via the piston to open the regulating valve. Then, the pressure oil flows through a passage in the direction of piston inside → orifice B → chamber A → circular orifice C → Drill hole D and the external of socket and then into the tank passage.

R35Z72MCV33

B35772MCV32

③ Since the pressure inside the chamber A decreases when the regulating valve is opened, which causes the pressure regulating valve to open to let the pressure oil port P flows into the tank passage through drill hole E.


ORV operation (3)

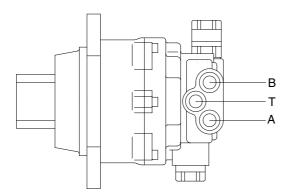
R35Z72MCV34

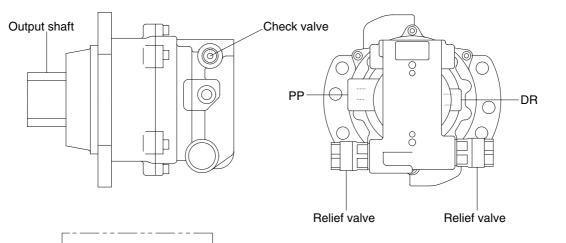
④ Also, since the regulating valve is pressed to the seat by regulating valve spring when the pressure at port P decreases below the setting pressure of regulating valve spring, the pressure inside chamber A becomes the same as the pressure at port P to cause the pressure regulating valve to be pressed to the seat, resulting in the original condition (①).

Overload relief valve (ORV) operation ② 【Operation during suction】

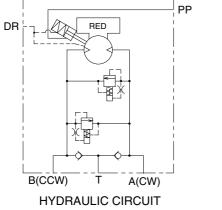
If there is negative pressure at port P (or the tank passage pressure is higher than P pressure), the socket is applied with press and open force. Then, the opening between body seat and socket increases to cause the oil to flow into port P from the tank passage, filling up the space.

ORV operation (during suction)

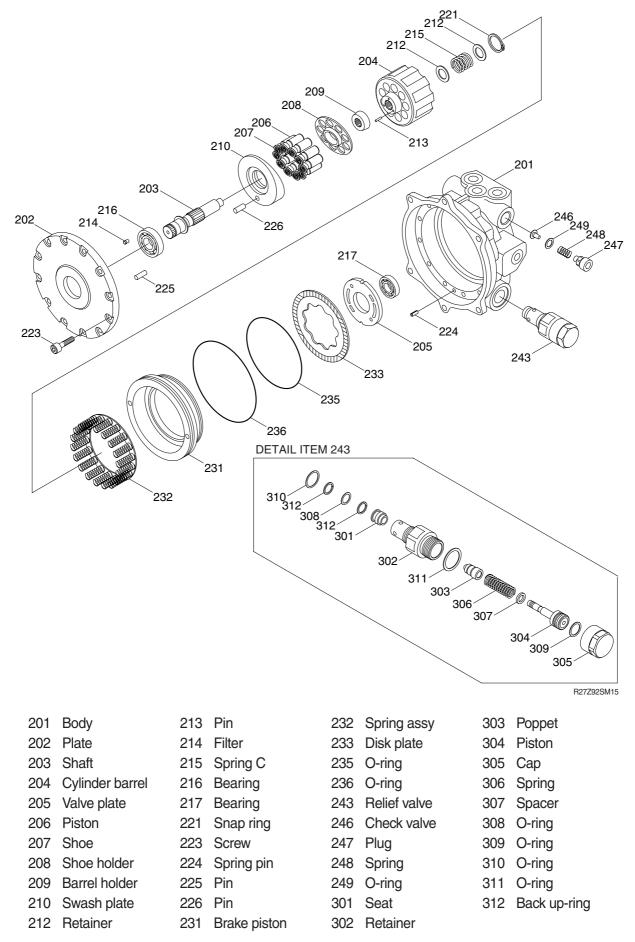

GROUP 3 SWING DEVICE

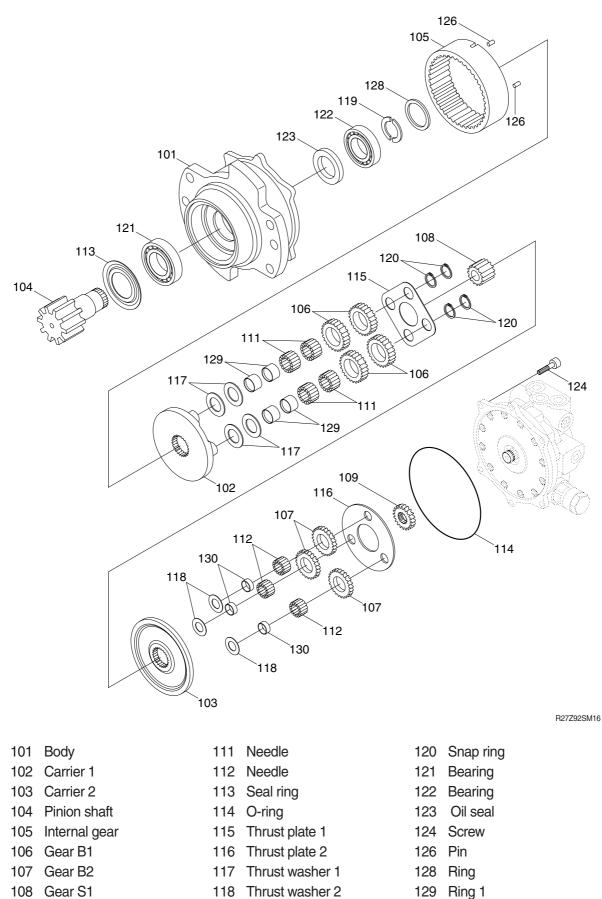

1. STRUCTURE

Swing device consists swing motor and swing reduction gear.

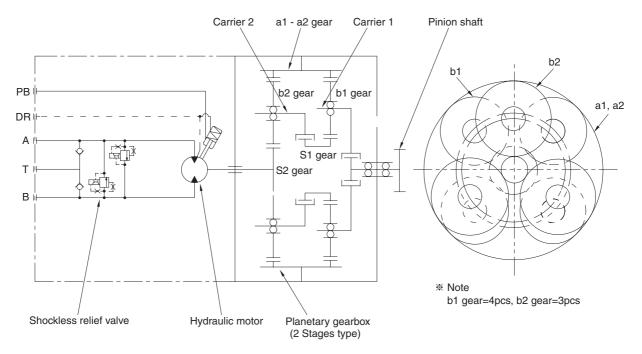

1) SWING MOTOR

Swing motor include mechanical parking valve, relief valve, make up valve and time delay valve.




R27Z92SM01

Port	Port name	Port size			
A	Main port	PF 3/8			
В	Main port	PF 3/8			
DR	Drain port	PF 3/8			
Т	Make up port	PF 3/8			
PP	Brake release port	PF 1/4			


109 Gear S2

130 Ring 2

119 Preload collar

2. OPERATION PRINCIPLE

R27Z92SM02

3. OPERATION

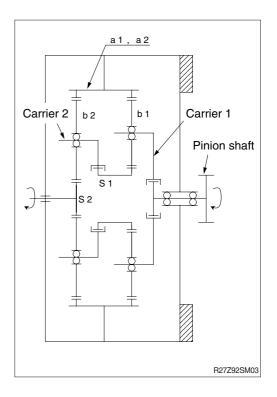
The swing motor consists of a planetary gear speed reducer, a hydraulic motor and the hydraulic valves.

1) REDUCTION GEAR SECTION

(1) Function

The speed reducer of swing motor is a simple planetary gear type with two stages. The high output speed of the hydraulic motor is reduced to low speed with high torque and obtaining the pinion shaft rotation.

(2) Operation


The s2 gear is attached to the hydraulic motor shaft, and the s2 output speed is reduced between the gears (s2, b2, a2).

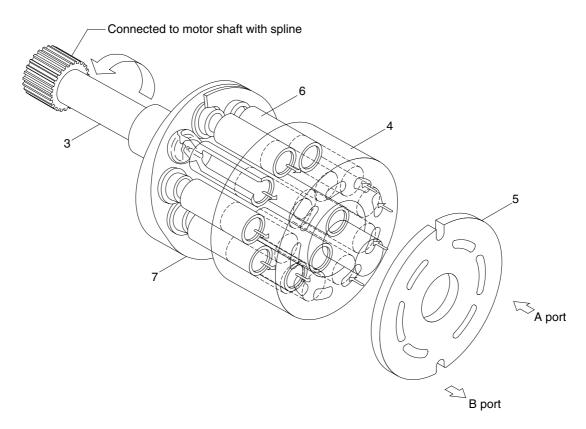
This reduced output speed is transmitted to the s1 gear and the speed is reduced again between the gears (s1, b1, a1), and it is transmitted to the pinion shaft, and drives the machine.

The gear ratio of two stages simple planetary speed reducer is calculated using the following formula.

$$R = \frac{Zs1}{Zs1 + Za1} \times \frac{Zs2}{Zs2 + Za2}$$

% Z ** : Number of gear teeth.

2) HYDRAULIC MOTOR SECTION

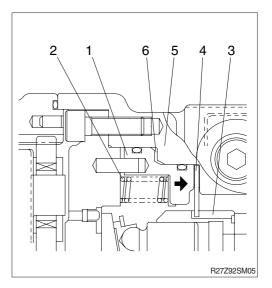

(1) Function

This hydraulic motor is an axial piston type, and changes the hydraulic energy supplied from the pump to the rotary motion.

(2) Structure

Through a hydraulic valve, the pressurized oil is supplied to the valve plate (5). When the pressurized oil is supplied to the A port, this pressurized oil pushes the piston (6) in the cylinder barrel (4). This pushing force is changed to the rotational power by the swash plate (7) and transmitted to the shaft (3) which is connected to the cylinder barrel (4) with the spline. The return flow from the cylinder port is going out through the B port of the valve plate (5).

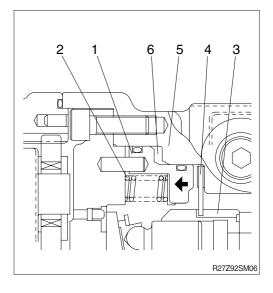
To reverse rotation, pressurized oil is supplied to the B port and returning oil exits through the A port.


R27Z92SM04

(3) Parking brake

The parking brake fixes the output shaft of hydraulic motor mechanically while the wheel motor is stopped.

At the brake releasing pressure OFF

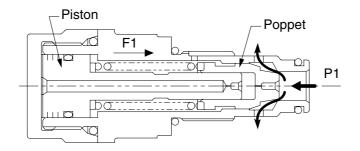

When brake releasing pressure is not supplied, the brake piston (1) is pressed in the direction (shown as arrow) by the spring (2). Then the disk plate (4) which is fixed to the cylinder barrel (3) is held between the body H (5) and the brake piston (1). As a result, with the friction of these parts, the cylinder barrel (3) and the hydraulic motor are unable to rotate.

2 At the brake releasing pressure ON

When brake releasing pressure is supplied, the oil is lead to chamber (6).

Then the brake piston (1) is moved to the direction (shown as arrow in) against the force of spring (2). As a result, the disk plate (4) is released from the friction, and the cylinder barrel (3) can be rotated.

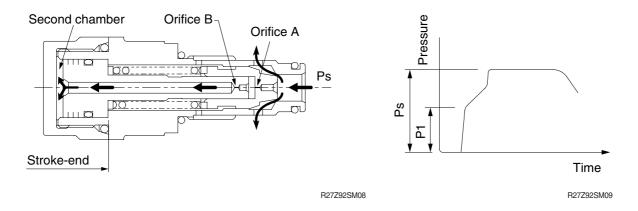
3) HYDRAULIC VALVE SECTION


(1) Shockless relief valve

The shockless relief valve consists of the direct relief valve (poppet) and the piston for changing the spring force with two stages.

When the hydraulic motor is stopped, even after closing IN and OUT port of the hydraulic motor, the motor tries to run with inertia. Motor works as like a pump, and the pressure (brake pressure) is made on the OUT port side. The shockless relief valve releases this brake pressure with two stages of operation. This makes the shock smooth, and prevents the motor being damaged. It also makes the start of the motor smooth.

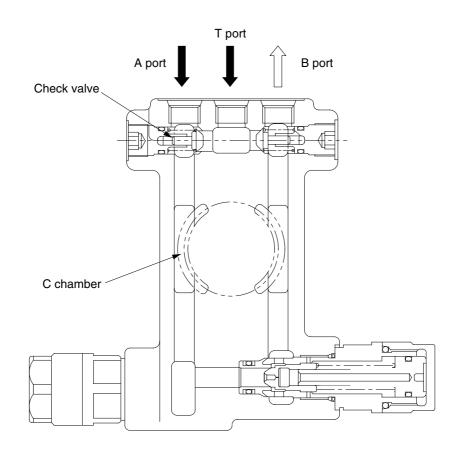
1 First stage


When the P1 pressure is going up, the poppet opens due to the pressure of the spring force F1.

R27Z92SM07

2 Second stage

When P1 pressure enters the second chamber through the orifice A and B, the piston moves to its stroke-end. With this action, the spring is compressed, the spring force becomes stronger, and the P1 pressure is increased to the setting pressure Ps.



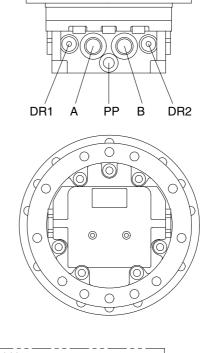
With the above two stages of operation, the motor starts and stops smoothly.

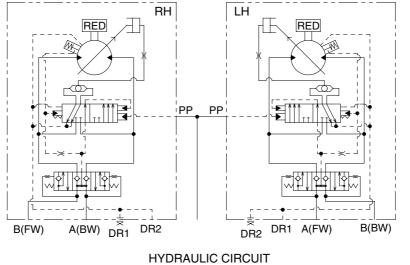
(2) Check valve

When the swing motor is decelerated by operating the control valve, it continues to be moved by the inertia of the machine. Then, it works as pump, and the pressure of C chamber tends to become negative. However, when B port pressure is below cracking pressure of the relief valve, all flow in A port goes out from B port through the motor.

Therefore, if C chamber can get flow only from the control valve, the flow will not be enough to prevent the negative pressure; as a result, cavitation could occur. The check valve works to supply the flow from T port to C chamber; and prevents cavitation.

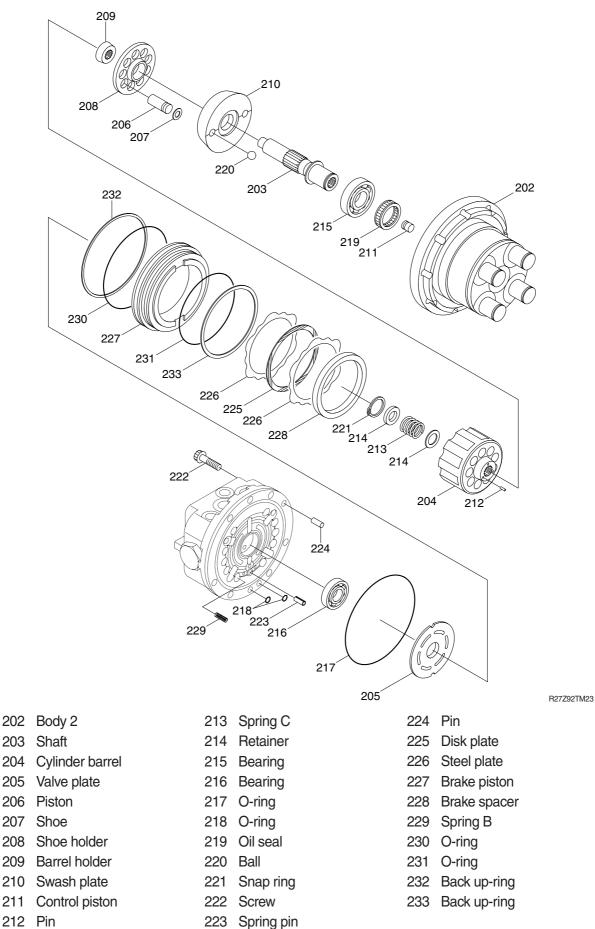
R27Z92SM10

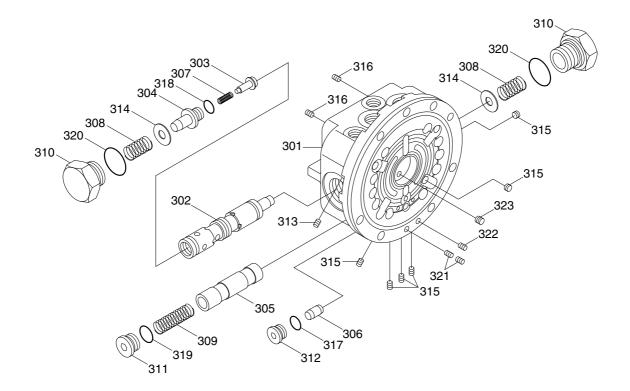

GROUP 4 TRAVEL DEVICE


1. CONSTRUCTION

Travel device consists travel motor and gear box.

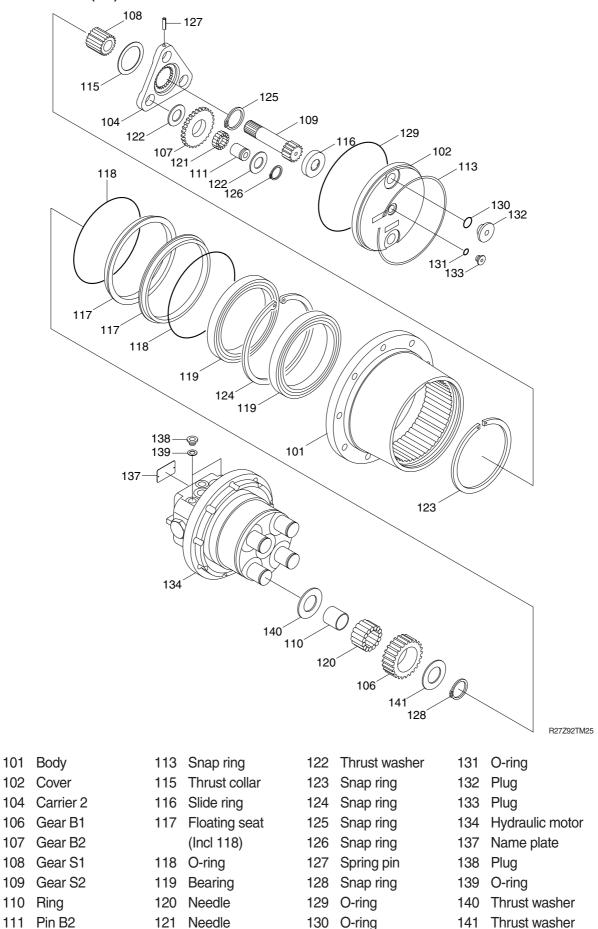
Travel motor includes counterbalance valve, parking brake and high/low speed changeover mechanism.


Port	Port name	Port size
А	Main port	PF 1/2
В	Main port	PF 1/2
DR1, DR2	Drain port	PF 1/4
PP	2 speed control port	PF 1/4



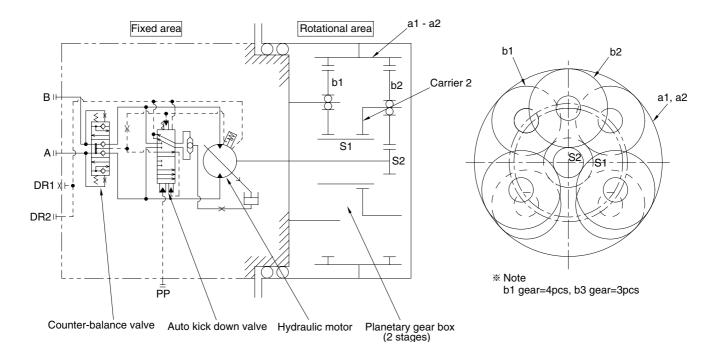
R27Z9AK2TM20

2) STRUCTURE (1/3)


2-45

R27Z92TM24

301	Body 1	309	Spring V3	317	O-ring
302	Spool	310	Plug	318	O-ring
303	Check valve	311	Plug	319	O-ring
304	Spring guide	312	Plug	320	O-ring
305	Spool	313	Choke	321	Choke
306	spool	314	Ring	322	Choke
307	Spring V1	315	Plug	323	Plug
308	Spring V2	316	Plug		


STRUCTURE (3/3)

111 Pin B2

2-47

2. DRAWING OF OPERATIONAL PRINCIPLE

R27Z9AK2TM03

3. OPERATION

Travel motor consists of a hydraulic motor "Fixed parts" and a planetary gear speed reducer "Rotating parts".

1) REDUCTION GEAR SECTION

(1) Function

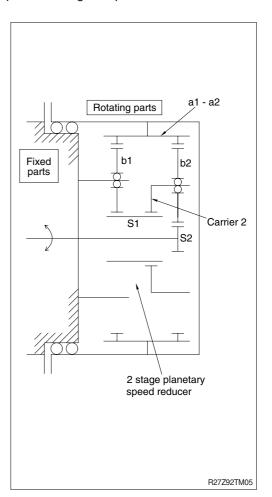
The speed reducer of travel motor is a simple planetary gear type with two stages. The high output speed of the hydraulic motor is reduced to low speed with high torque.

(2) Operation

The S2 gear is attached to the hydraulic motor shaft and the S2 output speed is reduced between the gears (s2, b2, a2) as a first stage speed reducer.

The reduced output speed of this first stage is reduced again between the gears (s1, b1, a1) which are connected to the carrier 2 with the spline.

This reduced output speed of the second stage is transmitted to the body case "rotating parts" through the inner gears (a1, a2) and drives the machine.

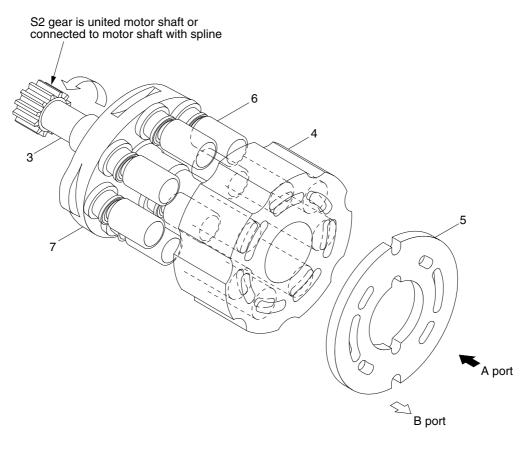

The gear ratio of 2 stage simple planetary speed reducer is calculated using the following formula.

$$R = \frac{Zs1}{Zs1 + Za1} \times \frac{Zs2}{Zs2 + Za2}$$

X Z** : Number of teeth

With the travel motor, the body case rotating, so the gear ratio is ;

$$\mathsf{R}' = \frac{1}{1 - 1/\mathsf{R}}$$



2) HYDRAULIC MOTOR SECTION

(1) Function

This hydraulic motor is an axial piston type, and changes the hydraulic energy supplied from the pump to the rotary motion.

(2) Structure

R27Z92TM06

Through a hydraulic valve, the pressurized oil is supplied to the valve plate (5).

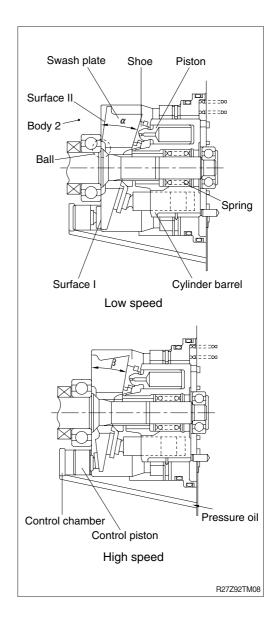
When the pressurized oil is supplied to the A port, this pressurized oil pushes the piston (6) in the clylinder barrel (4). This pushing force is changed to the rotational power by the swash plate (7) and transmitted to the shaft (3) which is connected to the cylinder barrel (4) with the spline. The return flow from the cylinder port is going out through the B port of the valve plate (5). To reverse rotation, pressurized oil is supplied to the B port and returning oil exits through the A port.

(3) 2 Speed motor operation

The swash plate, which has surface I and II in the opposite side to the shoe sliding surface, is supported by the 2 balls which are fixed to the body 2.

Since the balls are located in the eccentric position, in the low speed range, the surface I is faced to the body 2 by the oil pressure in the piston and the spring force in the cylinder barrel. The swash plate angle is α (Max. capacity).

When the pressurized oil is supplied to the (PP) port, the two-speed spool moves to the high position.


And the pressurized oil of inlet is led to the control chamber through the two-speed spool.

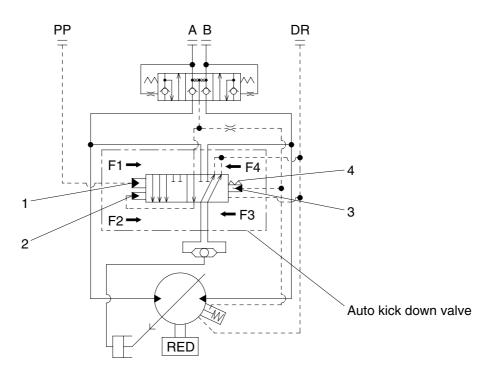
The control piston moves forward until the surface II of the swash plate is in contact with the body 2, and the swash plate angle becomes β .

The capacity of the hydraulic motor is made small.

The pressurized oil of the (PP) port is shut off (or the engine is stopped), the two-speed spool moves to the low position.

And the control chamber is led to the tank port through the two-speed spool and the swash plate position comes to the low speed by the spring force.

(4) Auto kick down valve

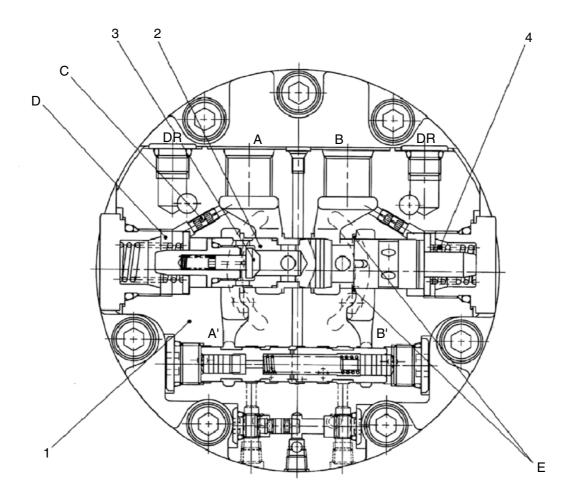

When the pilot switch for Hi speed mode is turned on, the pilot pressure for Hi speed mode comes from PP port to the hydraulic pilot (1), then the force F1 occurs, The auto kick down valve moves to the right direction because the F1 is larger than F4, which is by spring (4). Then the speed of track motor is changed to the Hi speed mode.

On the other hand, the operating pressure comes from A or B port to the hydraulic pilot (2) and (3), then the force F2 and F3 occur. The F3 larger than F2 because the area of (3) is wider than the area of (2). Therefore, if the operating pressure increased, the difference between F2 and F3 also increases.

When the operating pressure is larger than the setting pressure of Hi speed to Lo speed, the right direction resultant of F1 and F2 is smaller than the left direction resultant of F3 and F4.

Therefore the auto kick down valve moves to the left direction, then the speed of track motor is changed to the Lo speed mode. When the operating pressure is smaller than the larger than the left direction resultant of F3 and F4.

Therefore the auto kick down valve moves to the right direction, then the speed of track motor is changed to the Hi speed mode.

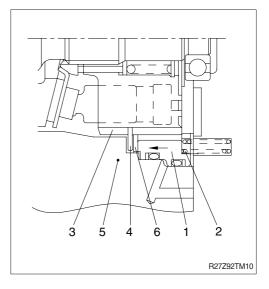

R27Z9AK2TM09

3) HYDRAULIC VALVE SECTION

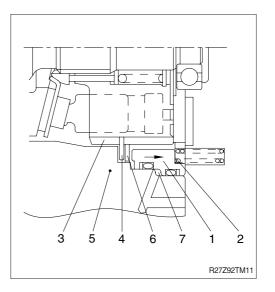
(1) Counter-balance valve

When the pressurized oil is supplied from the A port, the pressurized oil opens the check valve (3) and flows into the hydraulic motor inlet A' port. At the same time, the pressurized oil goes through the orifice C into the chamber D, pushes the spring (4) and moves the spool (2) to right. Then the returned oil from the hydraulic motor flows into the B port, goes through area E and drives the hydraulic motor. When the pressurized oil is supplied from the B port, the hydraulic motor rotates in reverse.

Even the pressurized oil of the A port is shut off, the hydraulic motor tries to rotate by inertia force. When the pressurized oil from the A port is shut off, the spool (2) tries to return to left by the spring (4) force. At this time, the oil in the chamber D tries to go out to the A port through the orifice C, but due to the throttle effect of orifice C, the spool (2) speed is reduced. With the orifice and notches on the spool, the returned oil is controlled gradually and the hydraulic motor stops smoothly.


R25Z9AK2TM19

4) PARKING BRAKE SECTION


(1) Structure

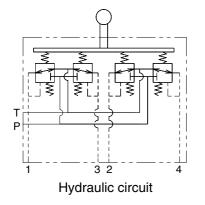
The parking brake fixes the output shaft of hydraulic motor mechanically while the travel motor is stopped. And it is applied automatically in the following fashion.

When A and B ports are not pressurized, the brake piston (1) is pressed in the direction (shown as arrow) by the spring (2). Then the disk plate (4) which is fixed to the cylinder barrel (3) is held between the steel plate (6) which are fixed to the body 2 (5) and the body 2 (5). As a result, with the friction of these plates, the cylinder barrel (3) and the hydraulic motor are unable to rotate.

When A or B ports are pressurized, the oil is lead to chamber (7). Then the brake piston (1) is moved to the direction (shown as arrow) against the force of spring (2). As a result, the disk plate (4) is released from the steel plate (6) and the body 2 (5), and the cylinder barrel (3) can be rotated.



GROUP 5 RCV LEVER


■ TYPE 1 (STD)

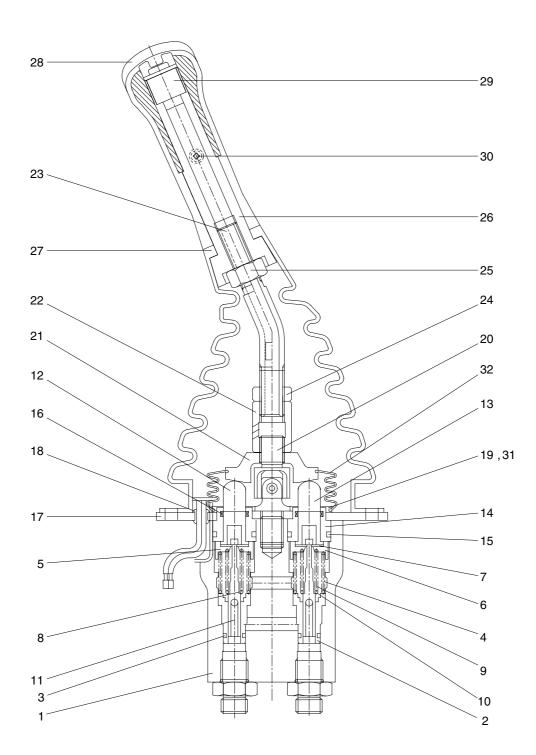
1. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1,2,3 and 4 provided at the bottom face.

R25Z9A2RL01

Port	LH	RH	Port size
Р	Pilot oil inlet port	Pilot oil inlet port	
Т	Pilot oil return port	Pilot oil return port	
1	Left swing port	Bucket out port	PF 1/4
2	Arm out port	Boom up port	FF 1/4
3	Right swing port	Bucket in port	
4	Arm in port	Boom down port	

CROSS SECTION


The construction of the pilot valve is shown in the attached cross section drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (11), spring (8, 9) for setting secondary pressure, return spring (4), stopper (7), spring seat (5, 6) and spring seat (10). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 5 to 20.5 kgf/cm² (depending on the type). The spool is pushed against the push rod (12, 13) by the return spring. When the push rod is pushed down by tilting the handle, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

- 1 Case
- 2 Plug
- 3 O-ring
- 4 Spring
- 5 Spring seat (1, 3)
- 6 Spring seat (2, 4)
- 7 Stopper
- 8 Spring (1, 3)
- 9 Spring (2, 4)
- 10 Spring seat
- 11 Spool

- 12 Push rod (1, 3)13 Push rod (2, 4)
- 14 Plug
- 15 O-ring
- 16 Rod seal
- 17 Plate (A)
- 18 Bushing
- 19 Machine screw
- 20 Joint assembly
- 21 Swash plate
- 22 Hex nut

- 23 Connector
- 24 Nut
- 25 Nut
- 26 Insert
- 27 Boot
- 28 Handle
- 29 Switch assembly
- 30 Screw
- 31 Plate
- 32 Boot

R25Z9A2RL02

2. FUNCTIONS

1) FUNDAMENTAL FUNCTIONS

The pilot value is a value that controls the spool stroke, direction, etc of a main control value. This function is carried out by providing the spring at one end of the main control value spool and applying the output pressure (secondary pressure) of the pilot value to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output ports (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port or tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

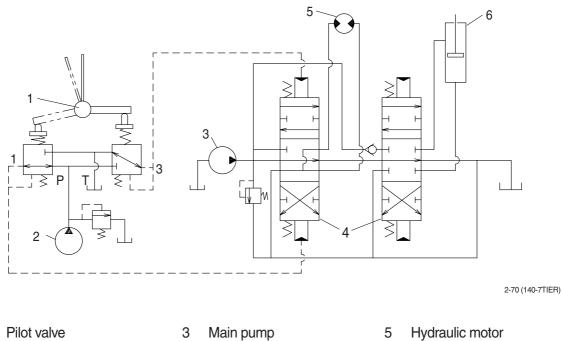
2) FUNCTIONS OF MAJOR SECTIONS

The functions of the spool (11) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output port pressure oil to tank port T.

The spring (8, 9) works on this spool to determine the output pressure.

The change the deflection of this spring, the push rod (12, 13) is inserted and can slide in the plug (14).

For the purpose of changing the displacement of the push rod through the switch plate (21) and adjusting nut (22) are provided the handle (28) that can be tilted in any direction around the fulcrum of the universal joint (20) center.

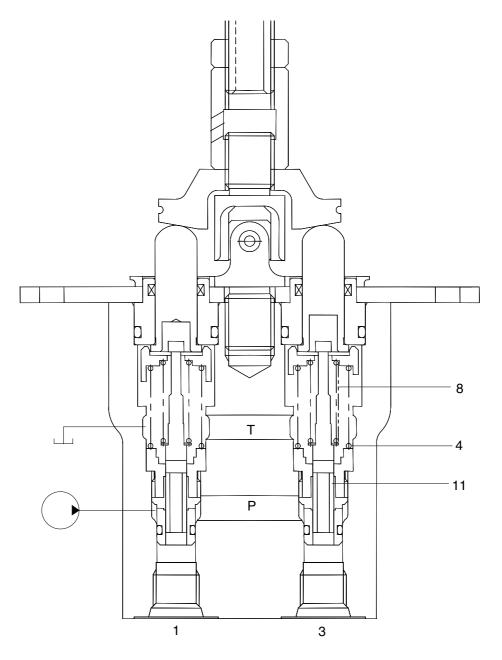

The spring (4) works on the case (1) and spring seat (5, 6) and tries to return the push rod (12, 13) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

This also has the effect of a reaction spring to give appropriate control feeling to the operator.

3) OPERATION

The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below and the attached operation explanation drawing.

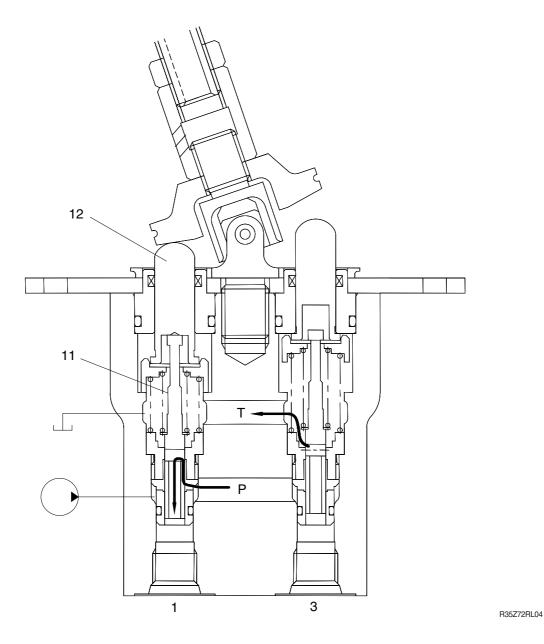
The diagram shown below is the typical application example of the pilot valve.



2 Pilot pump

1

- Main pump
- 4 Main control valve
- 6 Hydraulic cylinder


(1) Case where handle is in neutral position

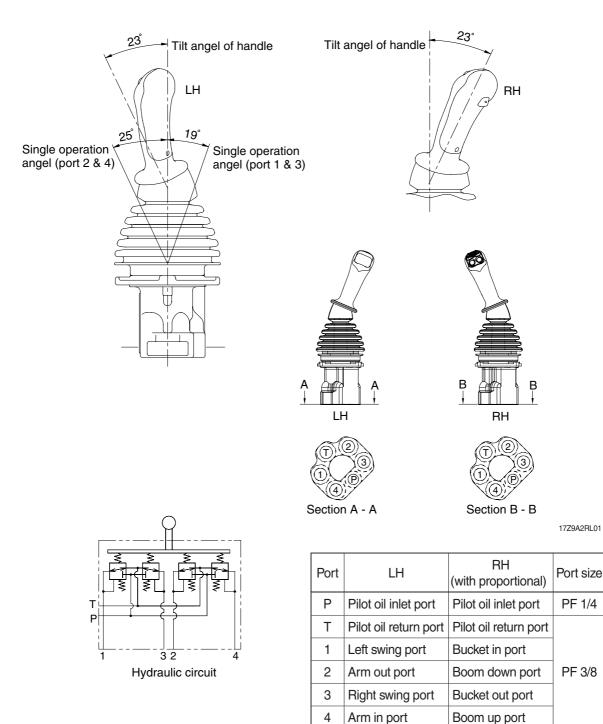
R35Z72RL03

The force of the spring (8) that determines the output pressure of the pilot valve is not applied to the spool (11). Therefore, the spool is pushed up by the spring (4) to the position of port (1, 3) in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

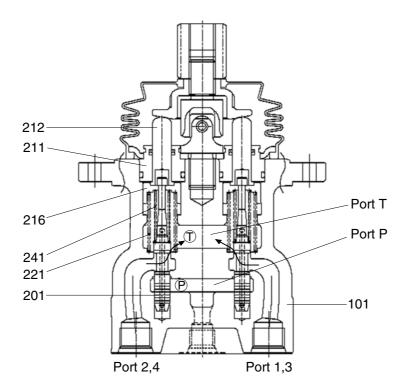
(2) Case where handle is tilted

When the push rod (12) is stroked, the spool (11) moves downwards.

Then port P is connected with port (1) and the oil supplied from the pilot pump flows through port (1) to generate the pressure.


When the pressure at port (1) increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port (1) increases higher than the set pressure, port P is disconnected from port (1) and port T is connected with port (1). If it decreases lower than the set pressure, port P is connected with port (1) and port T is disconnected from port 1.

In this manner the secondary pressure is kept at the constant value.


TYPE 2 (OPT)

1. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1,2,3 and 4 provided at the bottom face.

CROSS SECTION

17Z9A2RL02

- 101 Casing
- 201 Spool
- 211 Plug
- 212 Push rod

- 216 Spring seat
- 221 Return spring
- 241 Secondary pressure setting spring

The structure of the remote control valve is as shown in the assembly. There is a vertical axial hole in the casing and the reduction valves are inserted into this.

The secondary pressure setting spring (241) is set such that the secondary pressure is calculated as $5.1 \sim 10.2 \text{ kgf/cm}^2$. Spool (201) is pushed onto the push rod (212) by return spring (221). Tilting the control handle pushes down push rod (212), the spring seat (216) also moves down and the setting of the secondary pressure setting spring (241) is changed.

Port P, oil inlet (primary pressure) and port T outlet (tank) are in the casing (101).

2. PERFORMANCE

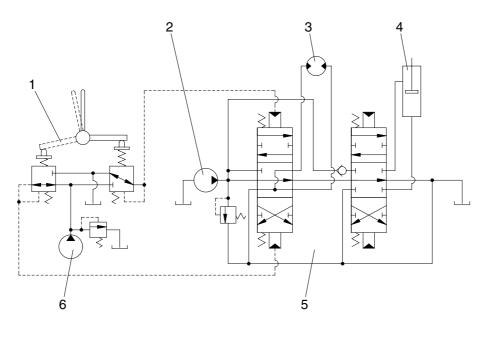
1) BASIC PERFORMANCE

The remote control valve controls the stroke and direction of the control valve spools. This is achieved by the output pressure of the remote control valve acting on the tip of the control valve spool.

To achieve satisfactory performance, the remote control valve comprises the following elements :

- (1) An inlet port (P) for oil fed from the hydraulic pump.
- (2) Multiple output ports (1, 2, 3 and 4) to allow pressure from the inlet port to act on the spool tips of the control valve.
- (3) A tank port (T) to control the output pressure.
- (4) A spool to connect the output port to the inlet port or tank port.
- (5) A mechanical assembly, which contains a spring which acts on the spool and controls the output pressure.

2) PERFORMANCE OF THE MAIN PARTS


The spool (201) operates to take the supply oil pressure from the hydraulic pump. This switches the oil channel so that the port P oil pressure is directed to the output ports 1, 2, 3, 4 or to port T. The secondary pressure setting spring (241) determines the output pressure that acts on the spool (201).

The push-rod (212), which changes the strain of the secondary pressure setting spring (241), is inserted so that it can move smoothly into the plug (211).

The return spring (221) acts to return the push-rod (212) towards zero displacement without reference to the output pressure acting on the spring seat (216) and casing (101). This acts to ensure the return to neutral of the spool (201) and also acts as a resistance spring to provide the operator with an appropriate operating "feel".

3) OPERATION

The operation of the remote control valve is described in the hydraulic circuit plan and operation explanatory figures (see figures RL04, 05 and 06). The below figure shows a typical example of the use of the remote control valve.

17Z9A2RL03

1 Remote control valve

Main pump

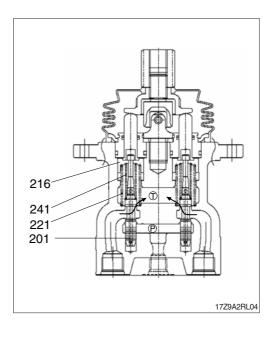
2

3 Hydraulic motor

Hydraulic cylinder

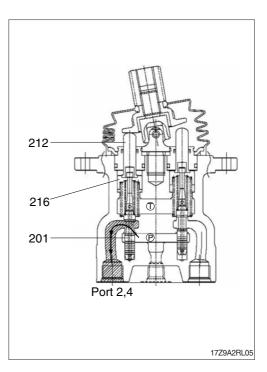
4

- 5 Control valve
- 6 Pilot pump

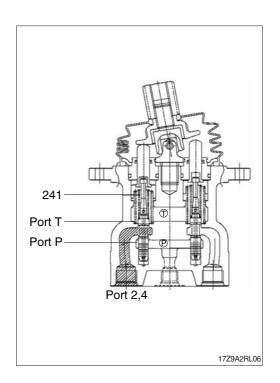

(1) Control handle neutral

The force of the secondary pressure setting spring (241) (which determines the output pressure of the pilot valve) does not act on the spool (201).

Spool (201) is pressed upward by the return spring (221) and spring seat (216).

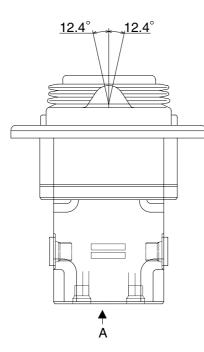

Output ports (2, 4) and port T are open.

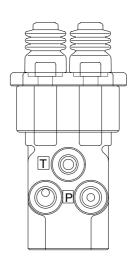
The output pressure is the same as the tank pressure.

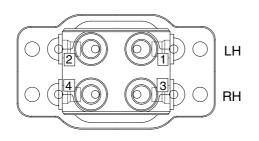

(2) Control handle tilted

The push-rod moves, (spring seat (216)), spool (201) moves downward, port P and ports (2, 4) are open and the oil fed from the pilot pump flows to ports (2, 4) and generates pressure.

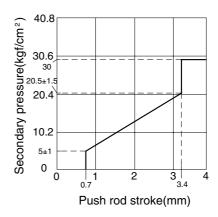
(3) Control handle held

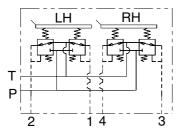

The pressure of ports (2, 4) rises to become equal to the spring (241) force; the oil pressure and spring pressures become balanced. If the pressure of ports (2, 4) exceeds the set pressure, ports (2, 4) and port P close, ports (2, 4) and port T open. If the pressure of ports (2, 4) falls below the set pressure, ports (2, 4) and port P open and ports (2, 4) and port T close. The secondary pressure is kept constant.



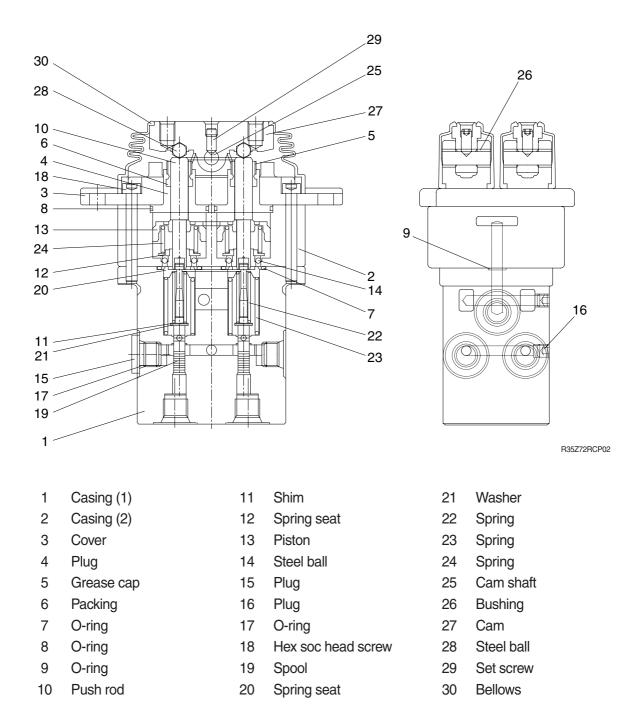

GROUP 6 RCV PEDAL

1. STRUCTURE


The casing has the oil inlet port P (primary pressure), and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1,2,3 and 4 provided at the bottom face.



R35Z72RCP01


Port	Port name	Port size
Р	Pilot oil inlet port	
Т	Pilot oil return port	
1	Travel (LH, Backward)	PF 1/4
2	Travel (LH, Forward)	FF 1/4
3	Travel (RH, Backward)	
4	Travel (RH, Forward)	

CROSS SECTION

The construction of the RCV pedal is shown in the below drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (19), spring (22) for setting secondary pressure, return spring (23), spring seat (20) and washer (21). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 5 to 19 kgf/cm² (depending on the type). The spool is pushed against the push rod (10) by the return spring.

When the push rod is pushed down by tilting pedal, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

2. FUNCTION

1) FUNDAMENTAL FUNCTIONS

The pilot valve is a valve controls the spool stroke, direction, etc of a main control valve. This function is carried out by providing the spring at one end of the main control valve spool and applying the output pressure (secondary pressure) of the pilot valve to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output port (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

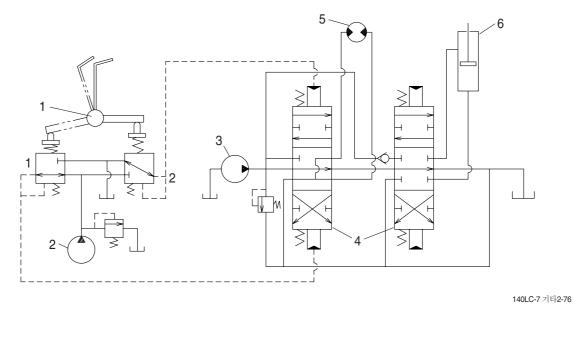
2) FUNCTIONS OF MAJOR SECTIONS

The functions of the spool (19) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output spool to determine the output pressure.

The spring (22) works on this spool to determine the output pressure.

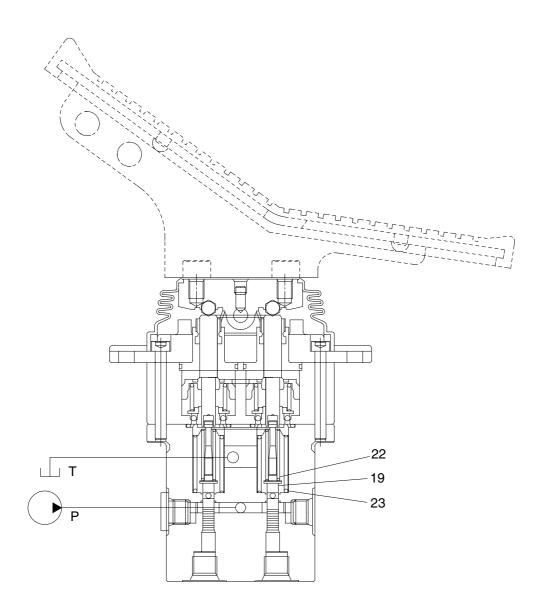
The change the deflection of this spring, the push rod (10) is inserted and can slide in the plug (4).

For the purpose of changing th displacement of the push rod through the cam (27) and steel ball (28) are provided the pedal that can be tilted in any direction around the fulcrum of the cam (27) center.


The spring (23) works on the casing (1) and washer (21) and tries to return the push rod (10) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

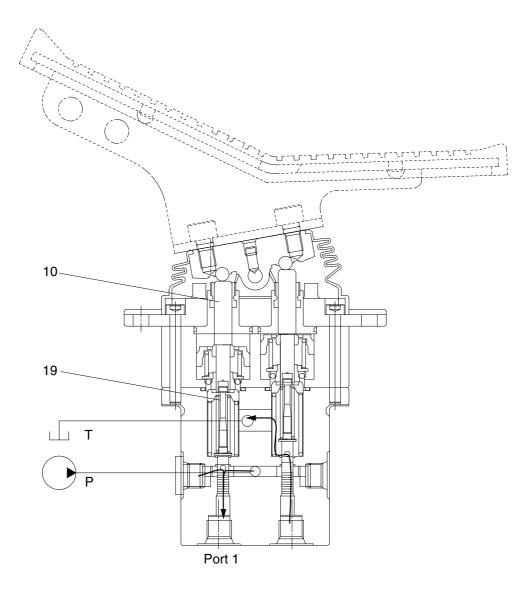
This also has the effect of a reaction spring to give appropriate control feeling to the operator.

3) OPERATION


The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below ant the attached operation explanation drawing.

The diagram shown below is the typical application example of the pilot valve.

- 1 Pilot valve
- 2 Pilot pump
- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where pedal is in neutral position

R35Z72RCP04

The force of the spring (22) that determines the output pressure of the pilot valve is not applied to the spool (19). Therefore, the spool is pushed up by the spring (23) to the position of port 2 in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

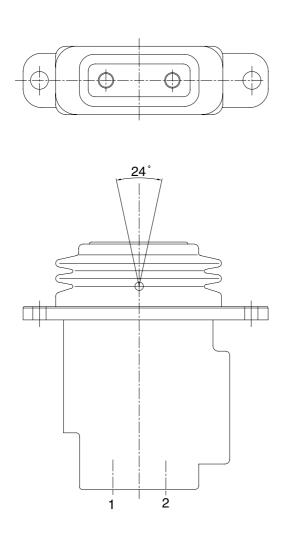
(2) Case where pedal is tilted

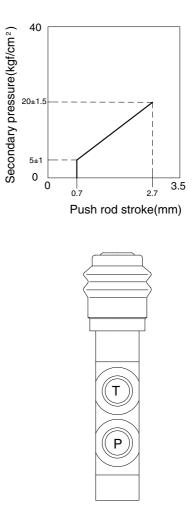
R35Z72RCP05

When the push rod (10) is stroked, the spool (19) moves downwards.

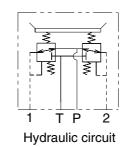
Then port P is connected with port 1, and the oil supplied from the pilot pump flows through port 1 to generate the pressure.

When the pressure at port 1 increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port 1 increases higher than the set pressure, port P is disconnected from port 1 and port T is connected with port 1. If it decreases lower than the set pressure, port P is connected with port 1 and port T and port 1.

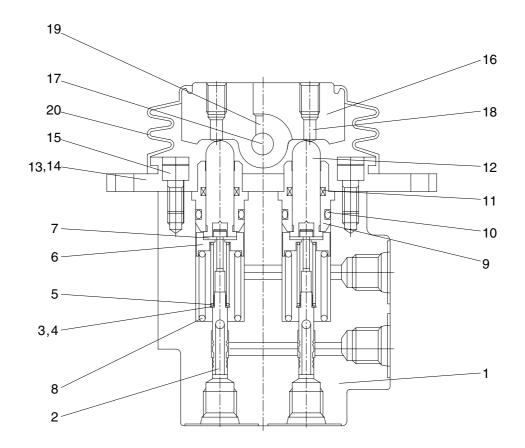

In this manner the secondary pressure is kept at the constant value.


3. BOOM SWING PEDAL

1) STRUCTURE


The casing has the oil inlet P (primary pressure) and the oil return port (tank).

In addition the secondary pressure is taken out through port 1 and port 2 provided at the housing bottom face.



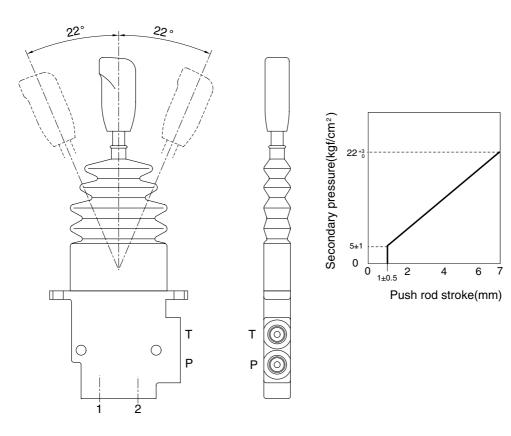
R35Z72RSP01

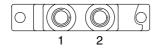
Port	Port name	Port size	
Р	Pilot oil inlet port		
Т	Pilot oil return port	PF 1/4	
1	Boom swing (LH)		
2	Boom swing (RH)		

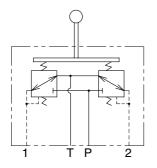
2) COMPONENT

- 1 Body
- 2 Plug
- 3 O-ring
- 4 Spool
- 5 Spring seat
- 6 Spring
- 7 Spring seat

- 8 Stopper
- 9 Spring
- 10 Plug
- 11 O-ring
- 12 Rod seal
- 13 Push rod
- 14 Cover

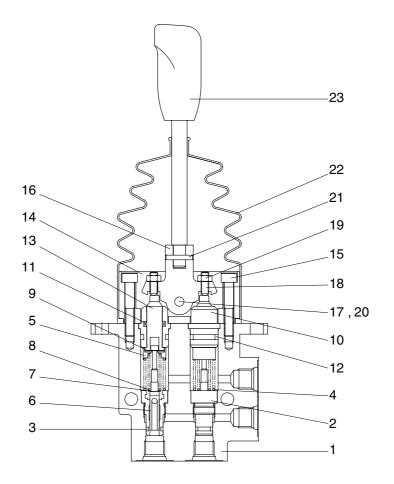

- R35Z72RSP02
- 15 DU bush
- 16 Wrench bolt
- 17 Cam
- 18 Pin
- 19 Adjust screw
- 20 Socket bolt
- 21 Bellows


4. DOZER LEVER


1) STRUCTURE

The casing has the oil inlet P (primary pressure) and the oil return port (tank).

In addition the secondary pressure is taken out through port 1 and port 2 provided at the housing bottom face.



Hydraulic circuit

Port	Port	Port size
Р	Pilot oil inlet port	PF 1/4
Т	Pilot oil return port	PF 1/4
1	Dozer blade up port	PF 1/4
2	Dozer blade down port	PF 1/4

2) COMPONENT

- 1 Body
- 2 Plug
- 3 O-ring
- 4 Spring
- 5 Spring seat
- 6 Spool
- 7 Spring seat
- 8 Spring

- 9 Stopper
- 10 Plug
- 11 Rod seal
- 12 O-ring
- 13 Push rod
- 14 Cover
- 15 Wrench bolt
- 16 Guide

- 17 Pin
- 18 Socket bolt

R35Z72DL02

- 19 Nut
- 20 Snap ring
- 21 Spring pin
- 22 Bellows
- 23 Lever