
Group	1	Structure and Function (fault code)	3-1
Group	2	Operational Checks and Troubleshooting	3-75
Group	3	Test and Adjustments	3-86
Group	4	Disassembly and Assembly	3-88

SECTION 3 POWER TRAIN SYSTEM

GROUP 1 STRUCTURE AND FUNCTION

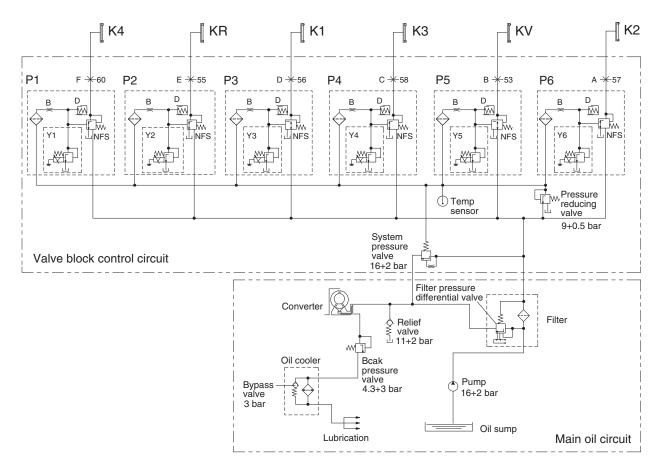
1. POWER TRAIN COMPONENT OVERVIEW

740F3PT01

The power train consists of the following components:

- \cdot Transmission
- \cdot Front, center and rear drive shafts
- \cdot Front and rear axles

Engine power is transmitted to the transmission through the torque converter.


The transmission is a hydraulically engaged four speed forward, three speed reverse countershaft type power shift transmission. A calliper-disc type parking brake is located on the transmission.

The transmission outputs through universal joints to three drive shaft assemblies. The front drive shaft is a telescoping shaft which drives the front axle. The front axle is mounted directly to the loader frame. The front axle is equipped with conventional differential as standard (option : Limited slip differential). The rear axle is equipped with conventional differential as standard (option : Limited slip differential). The rear axle is mounted on an oscillating pivot.

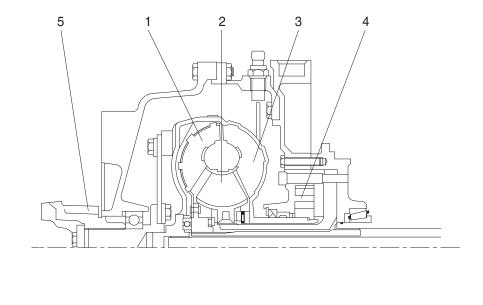
The power transmitted to front axle and rear axle is reduced by the pinion gear and ring gear of differential. It then passes from the differential to the sun gear shaft (axle shaft) of final drive.

The power of the sun gear is reduced by a planetary mechanism and is transmitted through the planetary hub to the wheel.

HYDRAULIC CIRCUIT

7607APT18

- NFS Follow-on slide
 - D Vibration damper
 - B Orifice
- P1 Proportional valve clutch K4
- P2 Proportional valve clutch KR


- P3 Proportional valve clutch K1
- P4 Proportional valve clutch K3
- P5 Proportional valve clutch KV
- P6 Proportional valve clutch K2
- Y1~Y6 Pressure regulator

Speed		Forv	vard			Reverse		Neutral	Engaged	Positions on the	Current No. of the
	1	2	3	4	1	2	3		clutch	valve block	measuring points
Y1				Х					K4	F	60
Y2					Х	Х	Х		KR	Е	55
Y3	Х				Х				K1	D	56
Y4			Х	Х			Х		K3	С	58
Y5	Х	Х	Х						KV	В	53
Y6		Х				Х			K2	А	57
Engaged clutch	K1,KV	KV,K2	K3,KV	K4,K3	KR,K1	KR,K2	KR, K3		-	-	-

X : Pressure regulator under voltage

2. TORQUE CONVERTER

1) FUNCTION

73033TM00

Input flange

- 1 Turbine 3 Pump 5
- 2 Stator 4 Transmission pump

The converter is working according to the Trilok-system, i.e. it assumes at high turbine speed the characteristics, and with it the favorable efficiency of a fluid clutch.

The converter is designed according to the engine power so that the most favorable operating conditions are obtained for each installation case.

The Torque converter is composed of 3 main components : Pump wheel - turbine wheel - stator (reaction member)

These 3 impeller wheels are arranged in such a ring-shape system that the fluid is streaming through the circuit components in the indicated order.

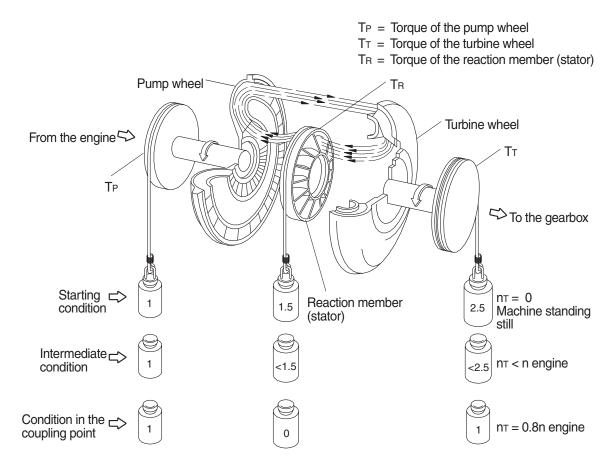
Pressure oil from the transmission pump is constantly streaming through the converter. In this way, the converter can fulfill its task to multiply the torque of the engine and at the same time, the heat created in the converter is dissipated via the escaping oil.

The oil which is streaming out of the pump wheel, enters the turbine wheel and is there inversed in the direction of flow.

According to the rate of reversion, the turbine wheel and with it also the output shaft is receiving a more or less high reaction torque. The stator (reaction member), following the turbine, has the task to reverse the oil streaming out of the turbine once more and to deliver it under the suitable discharge direction to the pump wheel.

Due to the reversion, the stator receiving a reaction torque.

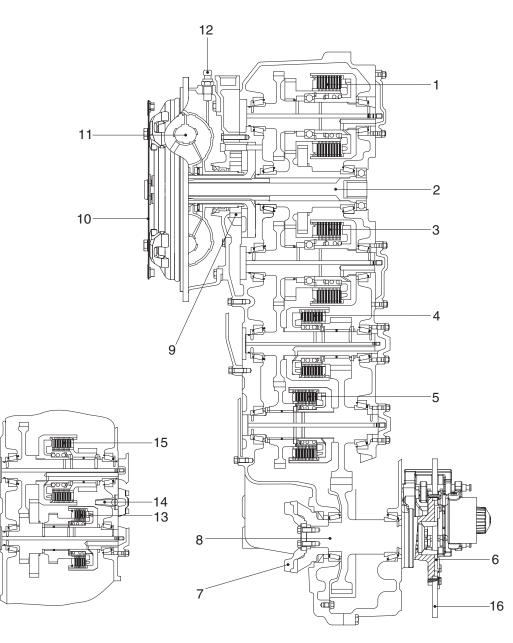
The relation turbine torque/pump torque is called torque multiplication. This is the higher, the greater the speed difference of pump wheel and turbine wheel will be.


Therefore, the maximum torque multiplication is created at stationary turbine wheel.

With increasing output speed, the torque multiplication is decreasing. The adaption of the output speed to a certain required output torque will be infinitely variable and automatically achieved by the torque converter.

When the turbine speed is reaching about 80% of the pump speed, the torque multiplication becomes 1.0 i.e. the turbine torque becomes equal to that of the pump torque. From this point on, the converter is working similar to a fluid clutch.

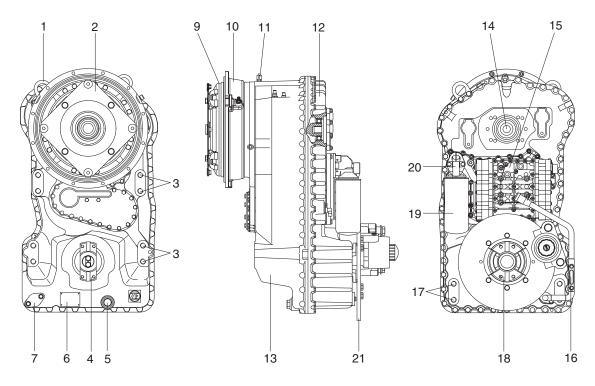
A stator freewheel serves to improve the efficiency in the upper driving range, in the torque multiplication range it is backing-up the torque upon the housing, and is released in the clutch range. In this way, the stator can rotate freely.


Function of a hydrodynamic torque converter (schematic view)

7577APT100

3. TRANSMISSION

1) LAYOUT



7577APT03

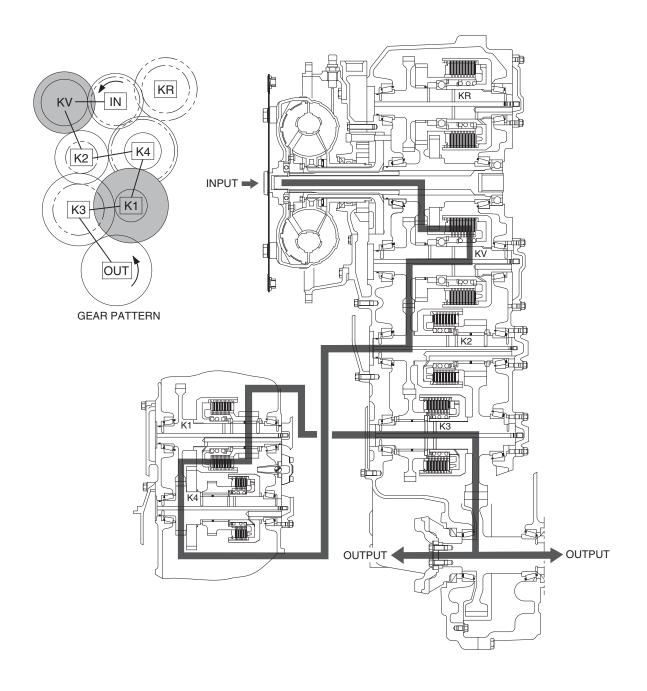
- 1 Reverse clutch (KR)
- 2 Engine-dependent power take-off
- 3 Forward clutch (KV)
- 4 2nd clutch (K2)
- 5 3rd clutch (K3)
- 6 Rear output flange
- 7 Converter side output flange
- 8 Output shaft
- 9 Transmission pump
- 10 Connection to engine
- 11 Converter

- 12 Inductive transmitter for engine speed
- 13 4th clutch (K4)
- 14 Converter relief valve
- 15 1st clutch (K1)
- 16 Parking brake

2) INSTALLATION VIEW

7409A3PT02

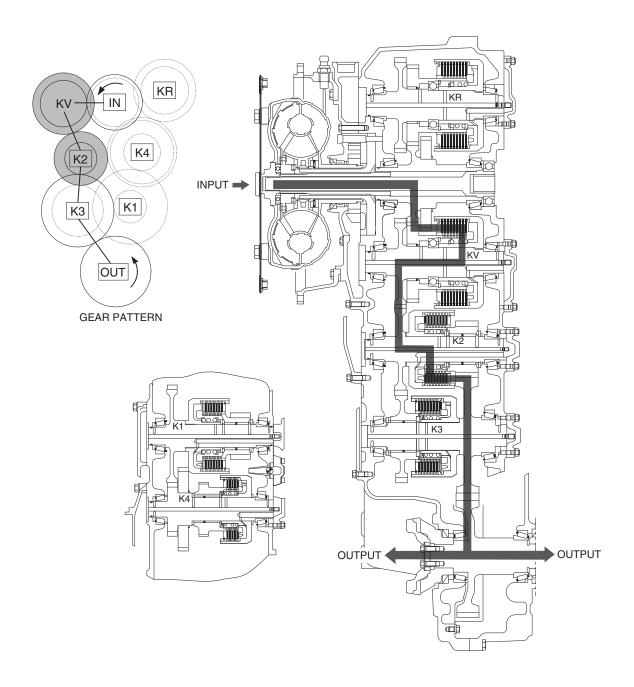
- 1 Lifting lugs
- 2 Connection to engine
- 3 Transmission suspension threads M20
- 4 Output flange-converter side
- 5 Oil drain plug with magnetic insert M38 × 1.5
- 6 Model identification plate
- 7 Attachment possibility for oil level tube with oil dipstick (converter side)
- 9 Cover
- 10 Converter bell housing
- 11 Breather
- 12 Transmission case cover


- 13 Transmission case
- 14 Power take-off; Coaxial; Engine-dependent
- 15 Electro-hydraulic control
- 16 Oil level tube with oil dipstick
- 17 Transmission suspension threads M20
- 18 Output flange-rear
- 19 Exchange filter (fine filter)
- 20 Filter head with connection for filter restriction switch
- 21 Parking brake

3) OPERATION OF TRANSMISSION (4 speed transmission)

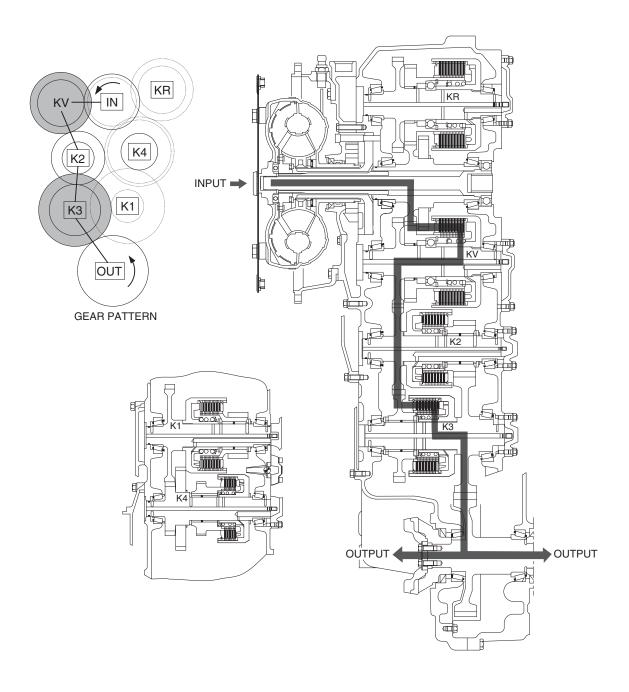
(1) Forward

1 Forward 1st


In 1st forward, forward clutch (KV) and 1st clutch (K1) are engaged. Forward clutch and 1st clutch are actuated by the hydraulic pressure applied to the clutch piston.

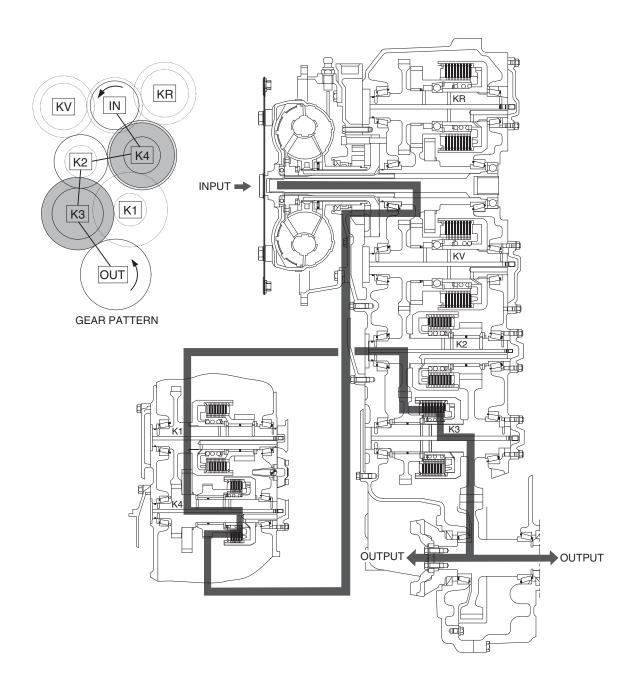
7577APT04 F1

2 Forward 2nd


In 2nd forward, forward clutch (KV) and 2nd clutch (K2) are engaged. Forward clutch and 2nd clutch are actuated by the hydraulic pressure applied to the clutch piston.

7577APT05 F2

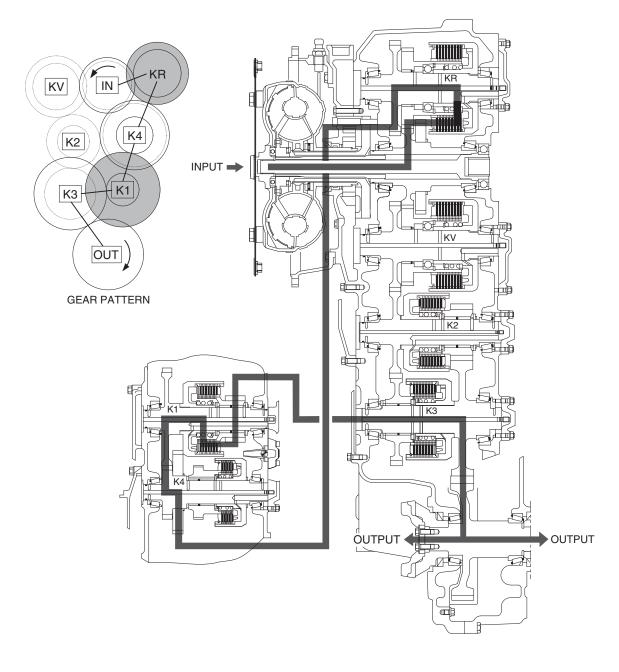
③ Forward 3rd


In 3rd forward, forward clutch (KV) and 3rd clutch (K3) are engaged. Forward clutch and 3rd clutch are actuated by the hydraulic pressure applied to the clutch piston.

7577APT06 F3

④ Forward 4th

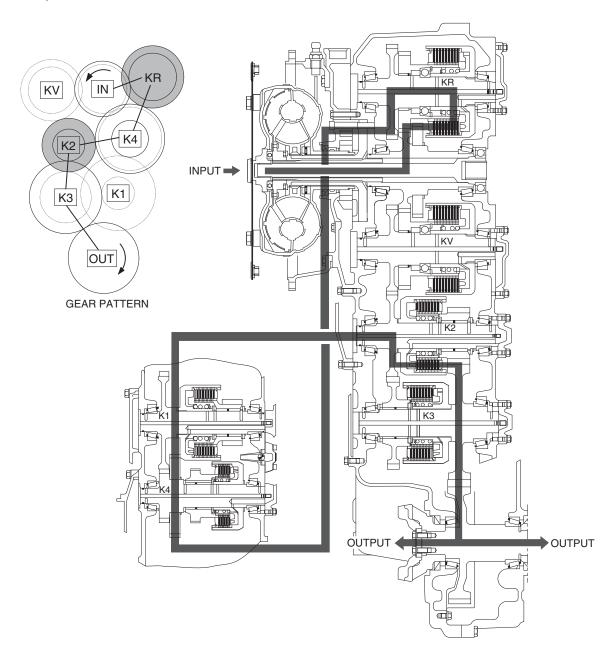
In 4th forward, 4th clutch (K4) and 3rd clutch (K3) are engaged. 4th clutch and 3rd clutch are actuated by the hydraulic pressure applied to the clutch piston.



7577APT07 F4

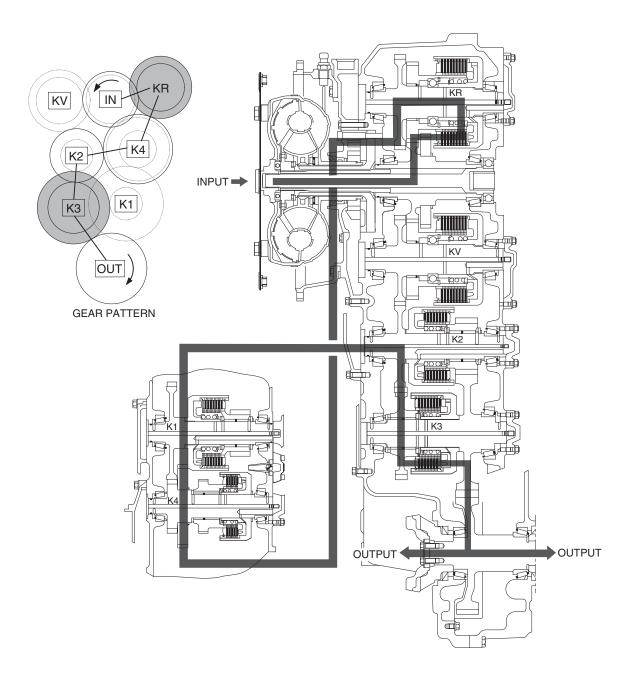
(2) Reverse

① Reverse 1st

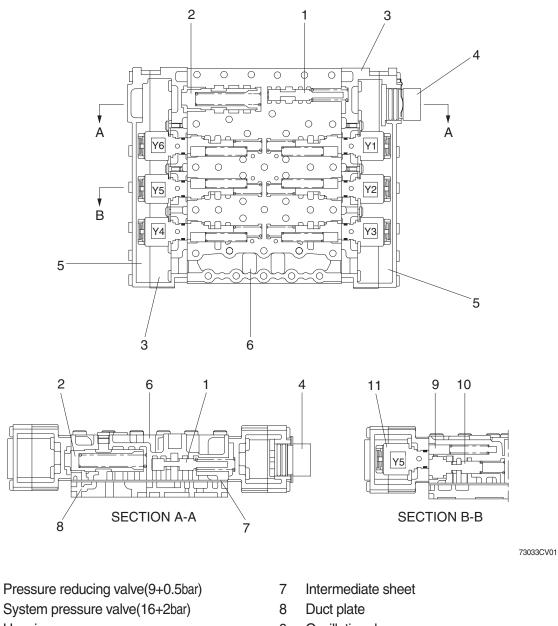

In 1st reverse, reverse clutch (KR) and 1st clutch (K1) are engaged. Reverse clutch and 1st clutch are actuated by the hydraulic pressure applied to the clutch piston.

7577APT08 R1

2 Reverse 2nd


In 2nd reverse, reverse clutch (KR) and 2nd clutch (K2) are engaged. Reverse clutch and 2nd clutch are actuated by the hydraulic pressure applied to the clutch piston.

7577APT09 R2


③ Reverse 3rd

In 3rd reverse, reverse clutch (KR) and 3rd clutch (K3) are engaged. Reverse clutch and 3rd clutch are actuated by the hydraulic pressure applied to the clutch piston.

7577APT10 R3

4) ELECTRO-HYDRAULIC SHIFT CONTROL WITH PROPORTIONAL VALVE

3 Housing

1 2

- 4 Cable harness
- 5 Cover
- 6 Valve block

- 9 Oscillation damper
- 10 Follow-on slide
- 11 Pressure regulator

Transmission control, see schedule of hydraulic circuit, electro-hydraulic control unit and measuring points at page 3-2, 3-14 and 3-86.

The six clutches of the transmission are selected via the 6 proportional valves P1 to P6. The proportional valve (pressure regulator unit) is composed of pressure regulator (e.g. Y1), follow-on slide and vibration damper.

The control pressure of 9 bar for the actuation of the follow-on slides is created by the pressure reducing valve. The pressure oil (16+2bar) is directed via the follow-on slide to the respective clutch.

Due to the direct proportional selection with separated pressure modulation for each clutch, the pressures to the clutches, which are engaged in the gear change, will be controlled. In this way, a hydraulic intersection of the clutches to be engaged and disengaged becomes possible.

This is creating spontaneous shiftings without traction force interruption.

At the shifting, the following criteria are considered:

- Speed of engine, turbine, central gear train and output.
- Transmission temperature.

- Shifting mode (Up-, down-, reverse shifting and speed engagement out of neutral).

- Load condition (full and part load, traction, overrun inclusive consideration of load cycles during the shifting).

The main pressure value is limiting the maximum control pressure to 16+2 bar and releases the main stream to the converter and lubricating circuit.

In the inlet to the converter, a converter safety valve is installed which protects the converter from high internal pressures (opening pressure 11+2bar).

Within the converter, the oil serves to transmit the power according to the well-known hydrodynamic principle (see torque converter, page 3-3).

To avoid cavitation, the converter must be always completely filled with oil.

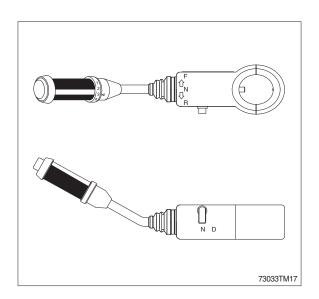
This is achieved by a converter back pressure back-up valve, rear-mounted to the converter, with an opening pressure of at least 4.3bar.

The oil, escaping out of the converter, is directed to a oil cooler.

The oil is directed from the oil cooler to the transmission and from there to the lubricating oil circuit, so that all lubricating points are supplied with cooled oil.

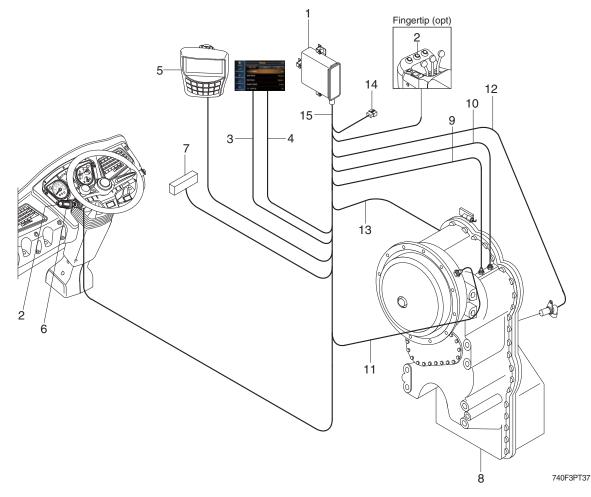
In the electro-hydraulic control unit are 6 pressure regulators installed.

5) GEAR SELECTOR (DW-3)


The gear selector is designed for the mounting on the left side of the steering column. The positions (speeds) 1 to 4 are selected by a rotary motion, the driving direction Forward (F)-Neutral (N)-Reverse (R) by tilting the gear selector lever.

The gear selector is also available with integrated kickdown push button.

For the protection from unintended start off, a neutral interlock is installed.


Position N - Gear selector lever blocked in this position.

Position D - Driving.

6) ELECTRIC CONTROL UNIT

(1) Complete system

- 1 Transmission control unit (EST-37A)
- 2 Kickdown switch
- 3 Clutch cut off mode
- 4 Transmission shift mode
- 5 Monitor
- 6 Gear selector (DW-3) with integrated kickdown switch
- 7 Power supply connection
- 8 Transmission
- 9 Cable to inductive transmitter speed central gear train
- 10 Cable to inductive transmitter speed turbine
- 11 Cable to inductive transmitter speed engine
- 12 Cable to speed sensor output and speedometer
- 13 Cable to plug connection on the electro hydraulic control unit
- 14 CAN-Connection
- 15 Wiring

(2) Description of the basic functions

The powershift transmissions is equipped is electronic transmission control unit (EST-37A), developed for it.

The system is processing the desire of the driver according to the following criteria.

· Gear determination depending on controller position, driving speed and load condition.

- Protection from operating errors as far as necessary, is possible via electronic protection (programming).
- \cdot Protection from over-speeds (On the basis of engine and turbine speed).
- · Automatic reversing (Driving speed-dependent).
- Pressure cut-off possible (disconnecting of the drive train for maximum power on the power take-off).
- · Change-over possibility for Auto-/Manual mode.
- · Kick down functions possible.

(3) Driving and shifting

- Neutral position :

Neutral position will be selected via the controller.

After the ignition is switched on, the electronics remains in the waiting state. By the position NEUTRAL of the controller, resp. by pressing the pushbutton NEUTRAL, the EST-37A becomes ready for operation.

Now, a gear can be engaged.

- Starting :

The starting of the engine has always to be carried out in the NEUTRAL POSITION of the controller.

For safety reasons it is to recommend to brake the machine securely in position with the parking brake prior to start the engine.

After the starting of the engine and the preselection of the driving direction and the gear, the machine can be set in motion by acceleration.

At the start off, the converter takes over the function of a master clutch.

On a level road it is possible to start off also in higher gears.

- Upshifting under load

Upshifting under load will be then realized if the machine can still accelerate by it.

- Downshifting under load

Downshifting under load will be realized if more traction force is needed.

- Upshifting in overrunning condition

In the overrunning mode, the upshifting will be suppressed by accelerator pedal idling position, if the speed of the machine on a downgrade should not be further increased.

- Downshifting in overrunning condition

Downshiftings in overrunning mode will be then carried out if the machine should be retarded.

If the machine will be stopped and is standing with running engine and engaged transmission, the engine cannot be stalled. On a level and horizontal roadway it is possible that the machine begins to crawl, because the engine is creating at idling speed a slight drag torque via the converter.

It is convenient to brake the machine at every stop securely in position with the parking brake. At longer stops, the controller has to be shifted to the NEUTRAL POSITION.

At the start off, the parking brake has to be released. We know from experience that at a converter transmission it might not immediately be noted to have forgotten this quite normal operating step because a converter, due to its high ratio, can easily overcome the braking torque of the parking brake.

Temperature increases in the converter oil as well as overheated brakes will be the consequences to be find out later.

Neutral position of the selector switch at higher machine speeds (above stepping speed) is not admissible.

Either a suitable gear is to be shifted immediately, or the machine must be stopped at once.

(4) Independent calibration of the shifting elements (AEB)

The AEB has the task to compensate tolerances (plate clearance and pressure level) which are influencing the filling procedure of the clutches. For each clutch, the correct filling parameters are determined in one test cycle for :

- · Period of the quick-filling time
- · Level of the filling compensating pressure

The filling parameters are stored, together with the AEB-program and the driving program in the transmission electronics. Because the electronics will be separately supplied, the AEB-cycle must be started only after the installation of both components in the machine, thus ensuring the correct mating (Transmission and electronics).

- * It is imperative, to respect the following test conditions :
 - Shifting position neutral
 - Engine in idling speed
 - Parking brake actuated
 - Transmission in operating temperature
- * After a replacement of the transmission, the electrohydraulic control or the TCU in the machine, the AEB-cycle must be as well carried out again.

The AEB-cycle continues for about 3 to 4 minutes. The determined filling parameters are stored in the EEProm of the electronics. In this way, the error message F6 shown on the display will be cancelled also at non-performed AEB.

(5) Pressure cut-off

In order to provide the full engine power for the hydraulic system, the control can be enlarged for the function of a pressure cut-off in the 1st and 2nd speed. In this way, the pressure in the powershift clutches will be cut-off, and the torque transmission in the drive train will be eliminated by it. This function will be released at the actuation of a switch, arranged on the brake pedal. For a soft restart, the pressure will be build-up via a freely programmable characteristic line.

4. FAULT CODE

1) MACHINE FAULT CODE

DTC				Application				
HCESPN	FMI	Diagnostic Criteria	G	С	S			
	3	10 seconds continuous, Hydraulic Oil Temp. Measurement Voltage > 3.95 V						
	4	10 seconds continuous, Hydraulic Oil Temp. Measurement Voltage < 0.3 V						
	(Resu	Its / Symptoms)						
	1. Mor	nitor – Hydraulic Oil temperature display failure						
101	2. Cor	ntrol Function – No warming up operation, No fuel warmer function operation,						
		High hydraulic oil temperature warning failure						
	(Chec	king list)						
		-58B (#23) – CD-01 (#2) Checking Open/Short						
	2. CN-	-58B (#25) – CD-01 (#1) Checking Open/Short						
	0	10 seconds continuous, Steering main pump pressure Measurement Voltage > 5.3 V						
	4	10 seconds continuous, Steering main pump pressure Measurement Voltage < 0.3 V						
	(Results / Symptoms)							
	1. Mor	nitor – Steering main pump press. Display failure						
202	2. Cor	ntrol Function – No automatic Emergency steering operation, ECO gauge displa	ay failu	ure				
	3. RMS – Working hours accumulation failure							
	(Checking list)							
	1. CN-58B (#35) – CD-39 (B) Checking Open/Short							
	2. CN-58A (#11) – CD-39 (A) Checking Open/Short							
	3. CN-58B (#25) – CD-39 (C) Checking Open/Short							
	0	10 seconds continuous,						
	0	Boom cylinder 'head' pressure Measurement Voltage > 5.3 V						
	4	10 seconds continuous,						
		Boom cylinder 'head' pressure Measurement Voltage < 0.3 V						
	(Results / Symptoms)							
204	1. Monitor – Boom cylinder 'head' press. display failure							
	2. Control Function – No Boom pressure calibration function operation, workload measurement sys.							
	operation failure							
	(Checking list)							
		-58B (#29) – CD-80 (B) Checking Open/Short						
	□ソ CN-	-58A (#11) – CD-80 (A) Checking Open/Short						
		-58B (#25) – CD-80 (C) Checking Open/Short						

DTC	;	Diagnostia Critoria		Application				
HCESPN	FMI	Diagnostic Criteria	G	С	S			
	_	10 seconds continuous,						
	0	Boom cylinder 'rod' pressure Measurement Voltage > 5.3V						
	4	10 seconds continuous,						
		Boom cylinder 'rod' pressure Measurement Voltage < 0.3V						
	(Resu	lts / Symptoms)						
205	1. Moi	nitor – Boom cylinder 'rod' press. display failure						
205	2. Cor	ntrol Function – No Boom pressure calibration function operation, workload me	asurer	nent s	sys.			
		operation failure						
	(Chec	king list)						
	1. CN	-58B(#36) – CD-81(B) Checking Open/Short						
	2. CN	-58A(#11) – CD-81(A) Checking Open/Short						
	3. CN	-58B(#25) – CD-81(C) Checking Open/Short						
	3	10 seconds continuous, Fuel level Measurement Voltage > 3.8V						
	4	10 seconds continuous, Fuel level Measurement Voltage < 0.3V						
	(Resu	Its / Symptoms)						
301	1. Moi	nitor – Fuel level display failure						
001	2. Cor	ntrol Function – Fuel level low warning operation failure						
	(Checking list)							
	1. CN-	-58B (#22) – CD-02 (#2) Checking Open/Short						
	2. CN	-58B (#25) – CD-02 (#1) Checking Open/Short						
		(In the startup conditions) 30 seconds continuous, Fan speed < 10 rpm in						
	8	the Remote cooling fan EPPR current reference value is in X Ma(differ by						
		model)						
010	(Resu	lts / Symptoms)						
318	1. Moi	nitor – Cooling Fan revolutions display failure						
	(Chec	king list)						
	1. CN	-58A (#15) – CD-73 (#1) Checking Open/Short						
	2. CN	-58A (#18) – CD-73 (#2) Checking Open/Short						
	3	10 seconds continuous,						
	3	Accel pedal position 1 voltage Measurement Voltage > 5.0 V						
	4	10 seconds continuous,						
	4	Accel pedal position 1 voltage Measurement Voltage < 0.2 V						
	(Resu	Its / Symptoms)						
339	1. Moi	nitor – Accel pedal position 1 voltage display failure						
	2. Cor	ntrol Function – Engine rpm control failure						
	(Chec	king list)						
	1. CN-	-58B(#39) – CN-162(#2) Checking Open/Short						
	2. CN	-58A(#6) – CN-162(#3) Checking Open/Short						
	3. CN	-58A(#8) – CN-162(#1) Checking Open/Short						
		: Cummins Engine application equipment S: Scania Engine application						

DTC	;	Diognastia Critoria	Application		
HCESPN	FMI	Diagnostic Criteria	G	С	S
	3	10 seconds continuous, Accel pedal position 2 voltage Measurement Voltage > 5.0 V			
	4	10 seconds continuous, Accel pedal position 2 voltage Measurement Voltage < 0.2 V			•
343	(Results / Symptoms) 343 1. Monitor – Accel pedal position 2 voltage display failure 2. Control Function – Engine rpm control failure (Checking list) 1. CN-58B (#40) – CN-162 (#5) Checking Open/Short 2. CN-58A (#7) – CN-162 (#6) Checking Open/Short 3. CN-58A (#9) – CN-162 (#4) Checking Open/Short 0 10 seconds continuous, Brake oil pressure Measurement Voltage > 5.3V 4 10 seconds continuous, Brake oil pressure Measurement Voltage < 0.3V				
	2. CN-	 -58B (#27) – CD-03 (B) Checking Open/Short -58A (#11) – CD-03 (A) Checking Open/Short -58B (#25) – CD-03 (C) Checking Open/Short 10 seconds continuous, Parking oil pressure Measurement Voltage > 5.3V 			
	4	10 seconds continuous, Parking oil pressure Measurement Voltage < 0.3V			
507	1. Mor 2. Cor (Chec 1. CN- 2. CN-	Its / Symptoms) hitor – Parking oil Press. display failure htrol Function – No judgment Parking status king list) -58B (#34) – CD-26 (B) Checking Open/Short -58A (#11) – CD-26 (A) Checking Open/Short -58B (#25) – CD-26 (C) Checking Open/Short	1	1	L
	0	10 seconds continuous, Brake oil charging priority pressure Measurement Voltage > 5.3V 10 seconds continuous, Brake oil charging priority pressure Measurement Voltage < 0.3V	•		
557	1. Mor 2. Cor (Chec 1. CN- 2. CN-	Its / Symptoms) nitor – Brake oil charging priority press. display failure ntrol Function – Cooling fan revolutions control failure, Brake oil(Accumulator) c king list) -58B (#38) – CD-31 (B) Checking Open/Short -58A (#11) – CD-31 (A) Checking Open/Short -58B (#25) – CD-31 (C) Checking Open/Short	hargin	g failu	Ire

DTC	;	Diagnostic Critoria		Application						
HCESPN	FMI	Diagnostic Criteria	G	С	S					
	0	10 seconds continuous, Battery input Voltage > 35V								
	1	10 seconds continuous, Battery input Voltage < 18V								
	(Resu	Its / Symptoms)								
705		ntrol Function – Disabled startup								
705	(Chec	king list)								
	1. Che	ecking battery voltage								
	2. CN-	-58A (#1) – CN-36 (07 fuse) Checking Open/Short								
	3. CN-	-58A (#2) – CN-36 (07 fuse) Checking Open/Short								
	1	(In the 500rpm or more) 10 seconds continuous,								
		Alternator Node I Measurement Voltage < 18V								
	(Resu	Its / Symptoms)								
707	1. Cor	ntrol Function – Battery charging circuit failure								
	(Chec	king list)								
	1. CN-	-58B (#33) – CN-04 (#18) Checking Open/Short								
	2. CN-	-04 (#18) – CN-74 (#2) Checking Open/Short								
	3	10 seconds continuous,								
	5	Boom position sensor signal voltage Measurement Voltage > 5.0V								
	4	10 seconds continuous,								
		Boom position sensor signal voltage Measurement Voltage < 0.3V								
	(Results / Symptoms)									
		nitor – Boom position sensor signal voltage display failure								
728		ntrol Function - No calibration angle sensor, No calibration boom pressure	e, Boo	om D	eten					
		tion failure,								
		Soft end stop(Boom) operation failure, Lock-up clutch operation failure								
	(Checking list)									
	1. CN-58B (#37) – CN-100 (B) Checking Open/Short									
		-58A (#5) – CN-100 (C) Checking Open/Short								
	3. CN	-58B (#25) – CN-100 (A) Checking Open/Short								
	3	10 seconds continuous,								
		Bucket position sensor signal voltage Measurement Voltage > 5.0V			<u> </u>					
	4	10 seconds continuous,								
	(Deeu	Bucket position sensor signal voltage Measurement Voltage < 0.3V								
		Its /Symptoms)								
729	 Monitor – Bucket position sensor signal voltage display failure Control Function – No calibration angle sensor, Bucket Detent operation failure, Soft end 									
		Bucket) operation failure	anure,	001	ent					
		king list)								
		-58B(#30) – CN-101(B) Checking Open/Short								
		-58A(#5) – CN-101(C) Checking Open/Short								
		-58B(#25) – CN-101(A) Checking Open/Short								
	0.011									

DTC	;		Application							
HCESPN	FMI	(When mounting the A/C Controller) 10 seconds continuous		С	S					
	2	(When mounting the A/C Controller) 10 seconds continuous, A/C controller Communication Data Error	•							
831	(Resu	Its / Symptoms)								
	1. Cor	ntrol Function – A/C Controller malfunction	-							
	2	10 seconds continuous, ECM Communication Data Error								
841	· ·	lts /Symptoms) ntrol Function – ECM operation failure								
	2	10 seconds continuous, TCU Communication Data Error								
842	`	(Results / Symptoms) 1. Control Function – TCU operation failure								
	2	10 seconds continuous, Monitor Communication Data Error								
844	(Results / Symptoms)									
	1. Control Function – Monitor operation failure									
	2	(When mounting the RMCU) 90 seconds continuous, RMCU Communication Data Error								
850	(Results / Symptoms) 1. Control Function – RMCU operation failure									
001	2	(When mounting the EHCU) 10 seconds continuous, EHCU Communication Data Error								
861	(Resu	(Results / Symptoms)								
	1. Cor	ntrol Function – EHCU operation failure								
	2	(When mounting the BKCU)								
869		10 seconds continuous, BKCU Communication Data Error	-		L					
	· ·	Its / Symptoms)								
	1. Cor	ntrol Function – BKCU operation failure								

1-1) AAVM FAULT CODE

Fault Code	Description	Fault Code	Description
A01	AAVM Communication Error -AAVM	A09	AAVM Hardware Error -AAVM
A02	AAVM Communication Error -Front Camera	A10	AAVM Hardware Error -Front Camera
A03	AAVM Communication Error -Rear Camera	A11	AAVM Hardware Error -Rear Camera
A04	AAVM Communication Error -Left Camera	A12	AAVM Hardware Error -Left Camera
A05	AAVM Communication Error -Right Camera	A13	AAVM Hardware Error -Right Camera
A06	Manual Setting Fail	A14	MCU CID Model is not registered
A07	No MCU CID	A15	MCU CID Model can't be applied
A08	MCU CID Format Error		

2) ENGINE FAULT CODE

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
111 629 12	Engine control module critical internal failure - Bad intelligent device or component. Error internal to the ECM related to memory hardware failures or internal ECM voltage supply circuits.	Possible no noticeable performance effects, engine dying, or hard starting.
115 612 2	Engine magnetic crankshaft speed/position lost both of two signals - Data erratic, intermittent, or incorrect. The ECM has detected the primary and backup speed sensor signals are connected backwards.	The engine will shut down or will not start.
122 102 3	Intake manifold 1 pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the intake manifold pressure circuit.	Engine power derate.
123 102 4	Intake manifold 1 pressure sensor circuit - Voltage below normal, or shorted to low Source. Low signal voltage or open circuit detected at the intake manifold pressure circuit.	Engine power derate.
124 102 16	Intake manifold 1 pressure - Data valid but above normal operational range - Moderately severe level. Intake manifold pressure is above the maximum operating limit.	Engine power derate.
125 102 18	Intake Manifold 1 Pressure - Data valid but below normal operating range - Moderately severe level. Intake manifold pressure is below the minimum operating limit.	Engine power derate.
131 91 3	Accelerator pedal or lever position sensor 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at accelerator pedal position number 1 circuit.	The engine will operate in limp home mode.
132 91 4	Accelerator pedal or lever position sensor 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at accelerator pedal position number 1 signal circuit.	The engine will operate in limp home mode.
133 974 3	Remote accelerator pedal or lever position sensor 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at remote accelerator pedal position signal circuit.	Remote accelerator will not operate.
134 974 4	Remote accelerator pedal or lever position sensor 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at remote accelerator pedal position signal circuit.	Remote accelerator will not operate.
143 100 18	Engine oil rifle pressure - Data valid but below normal operational range - Moderately severe level. Engine oil pressure signal indicates engine oil pressure is below the engine protection warning limit.	Engine power derate.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
144 110 3	Engine coolant temperature 1 sensor circuit - Voltage above normal, or shorted to high source. High signal voltage or open circuit detected at engine coolant temperature circuit.	Fan will stay ON if controlled by ECM.
145 110 4	Engine coolant temperature 1 sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at engine coolant temperature circuit.	Fan will stay ON if controlled by ECM.
146 110 16	Engine coolant temperature - Data valid but above normal operational range - Moderately severe level. Engine coolant temperature is above engine protection warning limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red stop lamp starts flashing.
151 110 0	Engine coolant temperature - Data valid but above normal operational range - Most severe level. Engine coolant temperature signal indicates engine coolant temperature above engine protection critical limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red stop lamp starts flashing.
153 105 3	Intake manifold 1 temperature sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at intake manifold air temperature circuit.	Fan will stay ON if controlled by ECM.
154 105 4	Intake manifold 1 temperature sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at intake manifold air temperature circuit.	Fan will stay ON if controlled by ECM.
155 105 0	Intake manifold 1 temperature - Data valid but above normal operational range - Most severe level. Intake manifold air temperature signal indicates intake manifold air temperature above engine protection critical limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red stop lamp starts flashing.
175 3464 3	Electronic throttle control actuator driver circuit - Voltage above normal, or shorted to high source. A short circuit to battery or open circuit has been detected in the engine intake air throttle actuator signal circuit.	Possible reduced engine performance.
176 3464 4	Electronic throttle control actuator driver circuit - Voltage below normal, or shorted to low source. A short circuit to ground has been detected in the engine intake air throttle actuator signal circuit.	Possible reduced engine performance.
177 3464 7	Electronic throttle control actuator - Mechanical system not responding or out of adjustment. The engine intake air throttle actuator has failed the auto zero span check.	Possible reduced engine performance.
187 3510 4	Sensor supply 2 circuit - Voltage below normal, or shorted to low source. Low voltage detected at the sensor supply number 2 circuit.	Engine power derate.
195 111 3	Coolant level sensor 1 circuit - Voltage above normal, or shorted to high source. High signal voltage detected at engine coolant level circuit.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
196 111 4	Coolant level sensor 1 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at engine coolant level circuit.	None on performance.
197 111 18	Coolant level - Data valid but below normal operational range - Moderately severe level. Low coolant level has been detected.	Engine power derate.
221 108 3	Barometric pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at barometric pressure circuit.	Engine power derate.
222 108 4	Barometric pressure sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at barometric pressure circuit.	Engine power derate.
227 3510 3	Sensor supply 2 circuit - Voltage above normal, or shorted to high source. High voltage detected at sensor supply number 2 circuit.	Engine power derate.
234 190 0	Engine crankshaft speed/position - Data valid but above normal operational range - Most severe level. Engine speed signal indicates engine speed above engine protection limit.	Engine power derate.
238 3511 4	Sensor supply 3 circuit - Voltage below normal, or shorted to low source. Low voltage detected on the +5 volt sensor supply circuit to the engine speed sensor.	Engine may run rough, may stop running, may not start, or may be difficult to start.
239 3511 3	Sensor supply 3 circuit - Voltage above normal or shorted to high source. High voltage detected on the 5 volt sensor supply circuit to the engine speed sensor.	Engine may run rough, may stop running, may not start, or may be difficult to start.
241 84 2	Wheel-based vehicle speed - Data erratic, intermittent, or incorrect. The ECM lost the vehicle speed signal or is reading an erratic value.	Engine speed limited to ,maximum engine speed without VSS parameter value. Cruise control, gear-down protection, and road speed governor will not work.
245 647 4	Fan control circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the fan control circuit when commanded on.	The fan may stay on continuously or not run at all.
249 171 3	Ambient air temperature sensor 1 circuit - Voltage above normal or shorted to high source. High signal voltage detected at ambient air temperature circuit.	Possible reduced engine performance.
256 171 4	Ambient air temperature sensor 1 circuit - Voltage below normal or shorted to low source. Low voltage detected at ambient air temperature circuit.	Possible reduced engine performance.
271 1347 4	Fuel pump pressurizing assembly 1 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the fuel pump actuator circuit.	Engine power derate.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
272 1347 3	Fuel pump pressurizing assembly 1 circuit - Voltage above normal, or shorted to high source. High signal voltage or open circuit detected at the fuel pump actuator circuit.	Engine may run rough, may stop running, may not start, or may be difficult to start.
285 639 9	SAE J1939 multiplexing PGN timeout error - Abnormal update rate. The ECM expected information from a multiplexed device but did not receive it soon enough or did not receive it at all.	At least one multiplexed device will not operate properly.
286 639 13	SAE J1939 multiplexing configuration error - Out of calibration. The ECM expected information from a multiplexed device but only received a portion of the necessary information.	At least one multiplexed device will not operate properly.
288 974 19	Sae J1939 multiplexing remote accelerator pedal or lever position sensor circuit - Received network data in error. The oem vehicle electronic control unit (VECM) detected a fault with the remote accelerator.	Remote accelerator will not operate.
295 108 2	Barometric pressure - Data erratic, intermittent, or incorrect. An error in the barometric pressure sensor signal was detected by the ECM.	Engine power derate.
322 651 5	Injector solenoid driver cylinder 1 circuit - Current below normal, or open circuit. Current detected at injector 1 when voltage is turned OFF.	Engine power derate.
323 655 5	Injector solenoid driver cylinder 5 circuit - Current below normal, or open circuit. Current detected at injector 5 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
324 653 5	Injector solenoid driver cylinder 3 circuit - Current below normal, or open circuit. Current detected at injector 3 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
325 656 5	Injector solenoid driver cylinder 6 circuit - Current below normal, or open circuit. Current detected at injector 6 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
331 652 5	Injector solenoid driver cylinder 2 circuit - Current below normal, or open circuit. Current detected at injector 2 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
332 654 5	Injector solenoid driver cylinder 4 circuit - Current below normal, or open circuit. Current detected at injector 4 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
334 110 2	Engine coolant temperature - Data erratic, intermittent, or incorrect. The engine coolant temperature sensor is reading an erratic value at initial key ON.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
338 1267 3	Idle shutdown vehicle accessories relay driver circuit - Voltage above normal, or shorted to high source. Open circuit or short to voltage source detected at the idle shutdown vehicle accessory/ignition bus relay circuit.	Vehicle accessories or ignition bus loads controlled by the idle shutdown relay will not power up.
339 1267 4	Idle shutdown vehicle accessories relay driver circuit - Voltage below normal, or shorted to low source. Low voltage detected at the idle shutdown vehicle accessory or ignition bus relay circuit when commanded ON.	Vehicle accessories or ignition bus loads controlled by the idle shutdown relay will not power up.
343 629 12	Engine control module warning internal hardware failure - Bad intelligent device or component. ECM power supply errors have been detected.	Engine power derate.
346 630 12	Engine control module calibration memory software - Bad intelligent device or component. Invalid switch configuration adjustable parameter setting have been detected by the engine control module (ECM).	Various optional switch inputs to the ECM may not operate correctly.
351 627 12	Injector power supply - Bad intelligent device or component. The ECM measured injector boost voltage is low.	Engine power derate.
352 3509 4	Sensor supply 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at sensor supply number 1 circuit.	Engine power derate.
383 729 5	Engine intake air heater 1 circuit - Current below normal or open circuit. A malfunctioning engine intake air heater circuit has been detected.	Engine may not start or may be difficult to start.
386 3509 3	Sensor supply 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at sensor supply number 1 circuit.	Engine power derate.
415 100 1	Engine oil rifle pressure - Data valid but below normal operational range - Most severe level. Oil pressure signal indicates oil pressure below the engine protection critical limit.	Progressive power and/or speed derate increasing in severity from time of alert. If engine protection shutdown feature is enabled, engine will shut down 30 seconds after red stop lamp starts flashing.
418 97 15	Water in fuel indicator - Data valid but above normal operational range - Least severe level. water has been detected in the fuel filter.	None on performance.
427 639 9	J1939 data link - Abnormal update rate. Communication between the engine control module (ECM) and another device on the SAE J1939 data link has been lost.	Engine will only idle.
428 97 3	Water in fuel indicator sensor circuit - Voltage above normal, or shorted to high source. High voltage detected at the water in fuel circuit.	None on performance. No water in fuel warning available.
435 100 2	Engine oil rifle pressure - Data erratic, intermittent, or incorrect. The engine oil pressure sensor is reading an erratic value.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
436 105 2	Intake manifold 1 temperature - Data erratic, intermittent, or incorrect. The intake manifold temperature sensor is reading an erratic value at initial key on or while the engine is running.	Possible reduced engine performance.
441 168 18	Battery 1 voltage - Data valid but below normal operational range - Moderately severe level. ECM supply voltage is below the minimum system voltage level.	Engine may run rough, may stop running, may not start, or may be difficult to start.
442 168 16	Battery 1 Voltage - Data valid but above normal operational range - Moderately severe level. ECM supply voltage is above the maximum system voltage level.	None on performance.
451 157 3	Injector metering rail 1 pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the rail fuel pressure sensor circuit.	Power and/or speed derate.
452 157 4	Injector metering rail 1 pressure sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the rail fuel pressure sensor circuit.	Power and/or speed derate.
483 1349 3	Injector metering rail 2 pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the fuel rail 2 pressure sensor circuit.	Possible reduced engine performance.
484 1349 4	Injector metering rail 2 pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the fuel rail 2 pressure sensor circuit.	Possible reduced engine performance.
515 3514 3	Sensor supply 6 circuit - Voltage above normal or shorted to high source. High voltage detected on the +5 volt sensor supply circuit to the fuel rail pressure sensor.	Engine power derate.
516 3514 4	Sensor supply 6 circuit - Voltage below normal or shorted to low source. Low voltage detected on the +5 volt sensor supply circuit to the fuel rail pressure sensor.	Engine power derate.
553 157 16	Injector metering rail 1 pressure - Data valid but above normal operational range - Moderately severe level. The ECM has detected that fuel pressure is higher than commanded pressure.	Possible reduced engine performance.
555 101 16	Crankcase pressure - Data valid but above normal operational range - Moderately severe level. The crankcase breather filter requires maintenance.	None on performance.
556 101 0	Crankcase pressure - Data valid but above normal operational range - Most severe level. The crankcase breather filter requires maintenance.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
559 157 18	Injector metering rail 1 pressure - Data valid but below normal operational range - Moderately severe level. The ecm has detected that fuel pressure is lower than commanded pressure.	Possibly hard to start or low power. Engine could possibly not start.
584 677 3	Starter relay driver circuit - Voltage above normal, or shorted to high source. Open circuit or high voltage detected at starter lockout circuit.	Either the engine will not start or the engine will not have starter lockout protection.
585 677 4	Starter relay driver circuit - Voltage below normal, or shorted to low source. Low voltage detected at starter lockout circuit.	Either the engine will not start or the engine will not have starter lockout protection.
595 103 16	Turbocharger 1 speed - Data valid but above normal operating range - Moderately severe level. High turbocharger speed has been detected by the ecm.	Engine power derate.
596 167 16	Electrical charging system voltage - Data valid but above normal operational range - Moderately severe level. High battery voltage detected by the battery voltage monitor feature.	None on performance.
597 167 18	Electrical charging system voltage - Data valid but below normal operational range - Moderately severe level. Low battery voltage detected by the battery voltage monitor feature.	None on performance.
649 1378 31	Engine oil change interval - Condition exists. Change engine oil and filter.	None on performance.
687 103 18	Turbocharger 1 speed - Data valid but below normal operational range - Moderately severe level. Low turbocharger speed detected by the ECM.	Engine power derate. The ECM uses an estimated turbocharger speed.
689 190 2	Engine crankshaft speed/position - Data erratic, intermittent, or incorrect. The ECM has detected an error in the engine speed signal.	Possible reduced engine performance.
691 1172 3	Turbocharger 1 compressor inlet temperature sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at turbocharger compressor inlet air temperature circuit.	Engine power derate.
692 1172 4	Turbocharger 1 compressor inlet temperature circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at turbocharger compressor inlet air temperature circuit.	Engine power derate.
693 1172 2	Turbocharger 1 compressor intake temperature - Data erratic, intermittent, or incorrect. A temperature too high or low for the operating conditions has been detected by the turbocharger compressor intake temperature sensor.	Possible reduced engine performance.

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
731 723 7	Engine speed / position camshaft and crankshaft misalignment - Mechanical system not responding properly or out of adjustment. Engine position signal from the crankshaft position sensor and camshaft position sensor do not match.	Engine power derate.
755 157 7	Injector metering rail 1 pressure - Mechanical system not responding or out of adjustment. The ecm has detected a difference in the 2 fuel rail pressure signals.	Possible reduced engine performance.
778 723 2	Engine camshaft speed / position sensor - Data erratic, intermittent, or incorrect. The ECM has detected an error in the camshaft position sensor signal.	Possible reduced engine performance.
784 1590 2	Adaptive cruise control mode - Data erratic, intermittent, or incorrect. Loss of communication with adaptive cruise control.	Adaptive cruise control will not operate. Standard cruise control may not operate.
1117 627 2	Power supply lost with ignition on - Data erratic, intermittent, or incorrect. Supply voltage to the ECM fell below 6.2 volts momentarily, or the ECM was not allowed to power down correctly (retain battery voltage for 30 seconds after key OFF).	Possible no noticeable performance.
1139 651 7	Injector solenoid driver cylinder 1 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1141 652 7	Injector solenoid driver cylinder 2 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1142 653 7	Injector solenoid driver cylinder 3 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1143 654 7	Injector solenoid driver cylinder 4 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1144 655 7	Injector solenoid driver cylinder 5 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1145 656 7	Injector solenoid driver cylinder 6 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1228 27 2	Egr valve position - Data erratic, intermittent, or Incorrect. The EGR valve is unable to meet commanded position.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1239 2623 3	Accelerator pedal or lever position sensor 2 circuit - Voltage above normal or shorted to high source. High voltage detected at accelerator pedal position number 2 signal circuit.	The engine will operate in limp home mode.
1241 2623 4	Accelerator pedal or lever position sensor 2 circuit - Voltage below normal or shorted to low source. Low voltage detected at accelerator pedal position number 2 signal circuit.	The engine will operate in limp home mode.
1242 91 2	Accelerator pedal or lever position sensor 1 and 2 - Data erratic, intermittent, or incorrect. Accelerator position sensor number 1 and number 2 are reading different values.	The engine will only idle.
1515 91 19	Sae J1939 multiplexed accelerator pedal or lever sensor system - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the multiplexed accelerator pedal.	The engine will only idle.
1654 1323 31	Engine misfire cylinder 1- Condition exists. Engine misfire has been detected in cylinder number 1.	Possible reduced engine performance.
1655 1324 31	Engine misfire cylinder 2 - Condition exists. Engine misfire has been detected in cylinder number 2.	Possible reduced engine performance.
1656 1325 31	Engine misfire cylinder 3 - Condition exists. Engine misfire has been detected in cylinder number 3.	Possible reduced engine performance.
1657 1326 31	Engine misfire cylinder 4 - Condition exists. Engine misfire has been detected in cylinder number 4.	Possible reduced engine performance.
1658 1327 31	Engine misfire cylinder 5 - Condition exists. Engine misfire has been detected in cylinder number 5.	Possible reduced engine performance.
1659 1328 31	Engine misfire cylinder 6 - Condition exists. Engine misfire has been detected in cylinder number 6.	Possible reduced engine performance.
1668 1761 4	Aftertreatment diesel exhaust fluid tank level sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid tank level sensor circuit.	Possible reduced engine performance.
1669 1761 3	Aftertreatment diesel exhaust fluid tank level sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the catalyst tank level sensor circuit.	Possible reduced engine performance.
1673 1761 1	Aftertreatment diesel exhaust fluid tank level - Data valid but below normal operating range - Most severe level. The aftertreatment diesel exhaust fluid tank level has fallen below the critical warning level.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1677 3031 4	Aftertreatment diesel exhaust fluid tank temperature sensor - Voltage below normal or shorted to low source. Low signal voltage detected at the diesel exhaust fluid tank temperature sensor circuit.	Possible reduced engine performance.
1678 3031 3	Aftertreatment diesel exhaust fluid tank temperature sensor - Voltage above normal or shorted to high source. High signal voltage or open circuit detected at the diesel exhaust fluid tank temperature sensor circuit.	Possible reduced engine performance.
1679 3031 2	Aftertreatment diesel exhaust fluid tank temperature - Data erratic, intermittent, or incorrect. The diesel exhaust fluid tank temperature sensor has indicated a tank temperature too high or too low for the ambient conditions.	Possible reduced engine performance.
1682 3362 31	Aftertreatment diesel exhaust fluid dosing unit input lines - Condition exists. The aftertreatment diesel exhaust fluid dosing unit is unable to prime.	Possible reduced engine performance.
1683 3363 3	Aftertreatment diesel exhaust fluid tank heater - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid tank heater circuit.	Possible reduced engine performance.
1684 3363 4	Aftertreatment diesel exhaust fluid tank heater - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid tank heater circuit.	Possible reduced engine performance.
1691 100 18	Aftertreatment diesel oxidation catalyst conversion efficiency - Data valid but below normal operating range - Moderately severe level. The temperature increase across the aftertreatment catalyst is lower than expected.	Possible frequent need for aftertreatment regeneration.
1695 3513 3	Sensor supply 5 - Voltage above normal or shorted to high source. High voltage detected at sensor supply 5 circuit in the oem harness.	the engine will operate in limp home mode.
1696 3513 4	Sensor supply 5 - Voltage below normal or shorted to low source. Low voltage detected at sensor supply number 5 circuit in the oem harness.	the engine will operate in limp home mode.
1712 3363 18	Aftertreatment diesel exhaust fluid tank heater - Data valid but below normal operating range - Moderately severe level. The aftertreatment diesel exhaust fluid tank heater is unable to thaw the frozen diesel exhaust fluid.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1713 3363 16	Aftertreatment diesel exhaust fluid tank heater - Data valid but above normal operating range - Moderately severe level. The diesel exhaust fluid tank heater is continuously in the on position.	None on performance.
1718 1322 31	Engine misfire for multiple cylinders - Condition exists. Engine misfire has been detected in multiple cylinder numbers.	Possible reduced engine performance.
1776 2634 3	Power relay driver circuit - Voltage above normal or shorted to high source. High voltage detected at power relay driver circuit.	Possible reduced engine performance.
1777 2634 4	Power relay driver circuit - Voltage below normal or shorted to low source. An open circuit or low voltage has been detected at the power relay circuit.	Possible reduced engine performance.
1843 101 3	Crankcase pressure circuit - Voltage above normal or shorted to high source. High signal voltage detected at the crankcase pressure circuit.	None on performance.
1844 101 4	Crankcase pressure circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the crankcase pressure circuit.	None on performance.
1866 411 2	Exhaust gas recirculation valve delta pressure - Data erratic, intermittent, or incorrect. An error in the egr delta pressure signal was detected at initial key on or the sensor failed the autozero test.	possible reduced engine performance.
1867 412 2	Engine gas recircuilation temperature - Data erratic, intermittent, or incorrect. Engine misfire has been detected in multiple cylinder numbers.	Possible reduced engine performance.
1879 3251 3	Aftertreatment diesel particulate filter differential pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment differential pressure sensor circuit.	possible reduced engine performance.
1881 3251 4	Aftertreatment diesel particulate filter differential pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage or open circuit detected at the aftertreatment differential pressure sensor circuit.	possible reduced engine performance.
1883 3251 2	Aftertreatment diesel particulate filter differential pressure sensor - Data erratic, intermittent, or incorrect. The aftertreatment diesel particulate filter differential pressure sensor is reading an erratic value at initial key on or during engine operation.	possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1885 3216 4	Aftertreatment intake NOx sensor circuit - Voltage below normal or shorted to low source. An internal circuit error has been detected by the aftertreatment intake NOx sensor.	Possible reduced engine performance.
1887 3226 4	Aftertreatment outlet NOx sensor circuit - Voltage below normal or shorted to low source. An internal circuit error has been detected by the aftertreatment outlet NOx sensor.	Possible reduced engine performance.
1896 2791 13	EGR valve controller - Out of calibration. The EGR valve has failed the automatic calibration procedure at initial key ON.	Possible reduced engine performance.
1921 3251 0	Aftertreatment diesel particulate filter differential pressure - Data valid but above normal operating range - Moderately severe level. The soot load of the aftertreatment diesel particulate filter has exceeded the recommended limits.	Possible reduced engine performance.
1922 3251 0	Aftertreatment diesel particulate filter differential pressure - Data valid but above normal operating range - Most severe level. The soot load of the aftertreatment diesel particulate filter has exceeded the recommended limits. Engine protection derate is enabled.	Possible reduced engine performance.
1938 3597 1	Ecu power output supply voltage 1 - Data valid but below normal operational range - Moderately severe level. Low battery voltage detected by the VGT actuator.	Possible reduced engine performance.
1942 101 2	Crankcase pressure - Data erratic, intermittent, or incorrect. The ECM has detected that the crankcase pressure signal is reading an erratic value at initial key ON or during engine operation.	None on performance.
1961 2791 0	EGR valve control circuit calculated over temperature - Data valid but above normal operational range - Least severe level. High EGR valve driver temperature has been detected.	Possible reduced engine performance.
1962 641 0	VGT Actuator driver over temperature (calculated) - Data valid but above normal operating range - Least severe level. High internal VGT actuator temperature has been detected.	None on performance.
1974 101 16	Crankcase pressure - Data valid but above normal operating range - Moderately severe level. The crankcase breather filter requires maintenance.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1993 4795 31	Aftertreatment diesel particulate filter missing - Condition exists. The aftertreatment diesel particulate filter in the exhaust system is not present.	Active aftertreatment diesel particulate filter regeneration will be disabled.
2185 3512 3	Sensor supply 4 circuit - Voltage above normal, or shorted to high source. High voltage detected at 5 VDC sensor supply circuit to the accelerator pedal position sensor.	Engine will only idle.
2186 3512 4	Sensor supply 4 circuit - Voltage below normal, or shorted to low source. Low voltage detected at 5 VDC sensor supply circuit to the accelerator pedal position sensor.	Engine will only idle.
2198 641 11	VGT Actuator driver circuit - Root cause not known. Intermittent communication between the smart VGT controller and the ECM has been detected. The VGT controller is not interpreting the J1939 message from the ECM correctly.	Possible reduced engine performance.
2272 27 4	EGR Valve position circuit - Voltage below normal or shorted to low source. Low signal voltage has been detected at the EGR valve position sensor circuit	Possible reduced engine performance.
2273 411 3	Exhaust gas recirculation valve delta pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the EGR differential pressure sensor circuit.	Possible reduced engine performance.
2274 411 4	Exhaust gas recirculation valve delta pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the EGR differential pressure sensor circuit.	Possible reduced engine performance.
2288 103 15	Turbocharger 1 speed - Data valid but above normal operating range - Least severe level. High turbocharger speed has been detected by the ECM.	Possible reduced engine performance.
2311 633 31	Electronic fuel injection control valve circuit - Condition exists. Fuel pump actuator circuit resistance too high or too low, or an intermittent connection has been detected.	Possible reduced engine performance.
2322 723 2	Engine camshaft speed / position sensor - Data erratic, intermittent, or incorrect. Camshaft engine speed sensor intermittent synchronization.	None on performance.
2349 2791 5	EGR Valve control circuit - Current below normal or open circuit. Motor terminal or motor coil open circuit has been detected by the ECM.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
2353 2791 6	EGR Valve control circuit - Current above normal or grounded circuit. A short circuit to ground has been detected in the EGR valve motor circuit.	Possible reduced engine performance.
2372 95 16	Fuel filter differential pressure - Data valid but above normal operational range - Moderately severe level. Excessive fuel flow restriction to the high pressure fuel pump has been detected.	Possible reduced engine performance.
2373 1209 3	Exhaust gas pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the exhaust gas pressure circuit.	Possible reduced engine performance.
2374 1209 4	Exhaust gas pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the exhaust gas pressure circuit.	Possible reduced engine performance.
2375 412 3	Exhaust gas recirculation temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at EGR temperature circuit.	Possible reduced engine performance.
2376 412 4	Exhaust gas recirculation temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at EGR temperature circuit.	Possible reduced engine performance.
2377 647 3	Fan control circuit - Voltage above normal, or shorted to high source. Open circuit or high voltage detected at the fan control circuit.	The fan can stay on continuously or not run at all.
2387 641 7	VGT Actuator driver circuit (motor) - Mechanical system not responding or out of adjustment. The smart VGT controller has detected incorrect stop limits, or the VGT is unable to move to the closed position.	Possible reduced engine performance.
2398 171 2	Ambient air temperature - Data erratic, intermittent, or incorrect. The ambient air temperature sensor is reading an erratic value.	Possible reduced engine performance.
2448 111 17	Coolant level - Data valid but below normal operational range - Least severe level. Low engine coolant level detected.	none on performance.
2449 641 13	Vgt actuator controller - Out of calibration. The VGT actuator has been installed incorrectly.	Possible reduced engine performance.
2468 102 3	Engine crankshaft speed/position - Data valid but above normal operating range - Moderately severe level. The engine speed has exceeded a critical limit.	Engine will be shut down.
2554 1209 2	Exhaust gas pressure - Data erratic, intermittent or incorrect. The exhaust gas pressure sensor is reading an erratic value.	possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
2555 729 3	Intake air heater 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at the intake air heater signal circuit.	The intake air heaters may be ON or OFF all the time.
2556 729 4	Intake air heater 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at the intake air heater signal circuit.	The intake air heaters may be ON or OFF all the time.
2634 641 12	VGT Actuator controller - Bad intelligent device or component. An internal error has been detected by the smart VGT controller.	Possible reduced engine performance.
2636 641 9	VGT Actuator driver circuit - abnormal update rate. No communications on the J1939 data link between the engine ECM and the smart VGT controller.	Possible reduced engine performance.
2638 5298 17	Aftertreatment diesel oxidation catalyst conversion efficiency - Data valid but below normal operating range - Least severe level. The temperature increase across the aftertreatment diesel oxidation catalyst is lower than expected.	Possible frequent need for aftertreatment regeneration.
2639 3251 15	Aftertreatment diesel particulate filter differential pressure - Data valid but above normal operating range - Least severe level. The soot load of the aftertreatment diesel particulate filter has exceeded the recommended limits.	Possible reduced engine performance.
2646 110 32	Engine coolant temperature - Condition exists. The EGR valve was closed to reduce engine coolant temperature.	Possible reduced engine performance.
2718 520325 31	Brake switch and accelerator pedal position incompatible - Condition exists. The ECM has detected the brake pedal and accelerator pedal were depressed simultaneously.	The engine will operate in limp home mode.
2771 3226 9	Aftertreatment outlet NOx sensor - Abnormal update rate. No communications or an invalid data transfer rate detected on the J1939 data link between the ECM and the aftertreatment outlet NOx sensor.	Possible reduced engine performance.
2777 3703 31	Particulate trap active regeneration inhibited due to inhibit switch - Condition exists. Regeneration of the diesel particulate filter has been prevented due to the permit switch being disabled.	Possible frequent need for aftertreatment regeneration.
2961 412 15	Exhaust gas recirculation temperature - Data valid but above normal operational range - Least severe level. EGR temperature has exceeded the engine protection limit.	Possible reduced engine performance.
2962 412 16	Exhaust gas recirculation temperature - Data valid but above normal operational range - Moderately severe level. EGR temperature has exceeded the engine protection limit.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
2963 110 15	Engine coolant temperature - Data valid but above normal operational range - Least severe level. Engine coolant temperature is above the engine protection warning limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
2964 105 15	Intake manifold 1 temperature - Data valid but above normal operational range - Least severe level. Intake manifold air temperature signal indicates intake manifold air temperature is above engine protection warning limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
2973 102 2	Intake manifold 1 pressure - Data erratic, intermittent, or incorrect. The intake manifold pressure sensor is reading an erratic value.	Possible reduced engine performance.
2976 3361 2	Aftertreatment diesel exhaust fluid dosing unit temperature - Data erratic, intermittent, or incorrect. An internal error has been detected in the aftertreatment diesel exhaust fluid dosing unit.	Possible reduced engine performance.
3133 3610 3	Aftertreatment diesel particulate filter outlet pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the aftertreatment diesel particulate filter outlet pressure sensor circuit.	Possible reduced engine performance.
3134 3610 4	Aftertreatment diesel particulate filter outlet pressure sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment diesel particulate filter outlet pressure sensor circuit.	Possible reduced engine performance.
3135 3610 2	Aftertreatment diesel particulate filter outlet pressure - Data erratic, intermittent or incorrect. The aftertreatment diesel particulate filter outlet pressure sensor is reading an erratic value at initial key ON or during engine operation.	Possible reduced engine performance.
3146 4363 3	Aftertreatment SCR outlet temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the SCR outlet temperature sensor circuit.	Possible reduced engine performance.
3147 4363 4	Aftertreatment SCR outlet temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the SCR outlet temperature sensor circuit.	Possible reduced engine performance.
3148 4363 2	Aftertreatment SCR outlet temperature sensor - Data erratic, intermittent, or incorrect. The SCR outlet temperature sensor is not changing with engine operating conditions.	Possible reduced engine performance.
3151 4794 31	Aftertreatment SCR catalyst system missing - Condition exists. The aftertreatment SCR catalyst in the exhaust system is not present.	Possible reduced engine performance.

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3165 4363 0	Aftertreatment SCR outlet temperature - Data valid but above normal operational range - Most severe level. The SCR outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Possible reduced engine performance.
3168 3936 16	Aftertreatment diesel particulate filter system - Data valid but above normal operating range - Moderately severe level. The system has detected a malfunction in the filtering capability of the aftertreatment diesel particulate filter.	None on performance.
3186 1623 9	Tachograph output shaft speed - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the tachograph output shaft speed sensor.	None on performance.
3213 1623 19	Tachograph output shaft speed - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the tachograph output shaft speed sensor.	None on performance.
3228 3216 2	Aftertreatment Intake NOx sensor - Data erratic, intermittent, or incorrect. An incorrect NOx sensor reading has been detected by the aftertreatment intake NOx sensor.	Possible reduced engine performance.
3232 3216 9	Aftertreatment Intake NOx sensor - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the aftertreatment intake NOx sensor.	Possible reduced engine performance.
3235 4363 16	Aftertreatment SCR outlet temperature - Data valid but above normal operating range - Moderately severe level. The SCR outlet temperature sensor reading has exceeded the maximum temperature limit.	Possible reduced engine performance.
3237 4340 3	Aftertreatment diesel exhaust fluid line heater 1 circuit - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater 1 circuit.	Possible reduced engine performance.
3238 4340 4	Aftertreatment diesel exhaust fluid line heater 1 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater 1 circuit.	Possible reduced engine performance.
3239 4342 3	Aftertreatment diesel exhaust fluid line heater 2 circuit - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater 2 circuit.	Possible reduced engine performance.
3241 4342 4	Aftertreatment diesel exhaust fluid line heater 2 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater 2 circuit.	Possible reduced engine performance.

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3242 3363 7	Aftertreatment diesel exhaust fluid tank heater - Mechanical system not responding or out of adjustment. The aftertreatment diesel exhaust fluid temperature did not increase when the aftertreatment diesel exhaust fluid tank heater was commanded ON.	Possible reduced engine performance.
3243 3060 18	Engine cooling system monitor - Data valid but below normal operating range - Moderately severe level. The engine is not warming up as expected.	None on performance.
3251 4765 16	Aftertreatment diesel oxidation catalyst intake temperature - Data valid but above normal operating range - Moderately severe level. The diesel oxidation catalyst intake temperature sensor reading has exceeded the maximum temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3253 3242 16	Aftertreatment diesel particulate filter intake temperature - Data valid but above normal operating range - Moderately severe level. The aftertreatment diesel particulate filter intake temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3254 3242 15	Aftertreatment diesel particulate filter intake temperature - Data valid but above normal operating range - Least severe level. The aftertreatment diesel particulate filter intake temperature sensor reading has exceeded the maximum engine protection temperature limit.	Possible reduced engine performance.
3255 3246 16	Aftertreatment diesel particulate filter outlet temperature - Data valid but above normal operating range - Moderately severe level. The aftertreatment diesel particulate filter outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3256 3246 15	Aftertreatment diesel particulate filter outlet temperature - Data valid but above normal operating range - Least severe level. The aftertreatment diesel particulate filter outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Possible reduced engine performance.
3258 4340 5	Aftertreatment diesel exhaust fluid line heater 1 circuit - Current below normal or open circuit. Open circuit detected in the diesel exhaust fluid line heater 1.	Possible reduced engine performance.
3261 4342 5	Aftertreatment diesel exhaust fluid line heater 2 circuit - Current below normal or open circuit. Open circuit detected in the diesel exhaust fluid line heater 2.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3311 3242 0	Aftertreatment diesel particulate filter intake temperature - Data valid but above normal operating range - Most severe level. The aftertreatment diesel particulate filter intake temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3312 3246 0	Aftertreatment diesel particulate filter outlet temperature - Data valid but above normal operating range - Most severe level. The aftertreatment diesel particulate filter outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3313 4765 4	Aftertreatment diesel oxidation catalyst intake temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the catalyst intake sensor circuit.	Possible reduced engine performance.
3314 4765 3	Aftertreatment diesel oxidation catalyst intake temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the catalyst intake temperature sensor circuit.	Possible reduced engine performance.
3315 4765 2	Aftertreatment diesel oxidation catalyst intake temperature - Data erratic, intermittent, or incorrect. The aftertreatment diesel oxidation catalyst intake temperature sensor is not changing with engine operating conditions.	Possible reduced engine performance.
3316 3242 4	Aftertreatment diesel particulate filter intake temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel particulate filter intake temperature sensor circuit.	Possible reduced engine performance.
3317 3242 3	Aftertreatment diesel particulate filter intake temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage or open circuit detected at the aftertreatment diesel particulate filter intake temperature sensor circuit.	Possible reduced engine performance.
3318 3242 2	Aftertreatment diesel particulate filter intake temperature - Data erratic, intermittent, or incorrect. The aftertreatment diesel particulate filter intake temperature is not changing with engine operating conditions.	Possible reduced engine performance.
3319 3246 3	Aftertreatment diesel particulate filter outlet temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage or open circuit detected at the aftertreatment diesel particulate filter outlet temperature sensor circuit.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3321 3246 4	Aftertreatment diesel particulate filter outlet temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel particulate filter outlet temperature sensor circuit.	Possible reduced engine performance.
3322 3246 2	Aftertreatment diesel particulate filter outlet temperature - Data erratic, intermittent, or incorrect. The aftertreatment diesel particulate filter outlet temperature is not changing with engine operating conditions.	Possible reduced engine performance.
3326 91 9	SAE J1939 Multiplexed accelerator pedal or lever sensor system - Abnormal update rate. The ECM expected information from a multiplexed accelerator pedal or lever sensor but did not receive it soon enough or did not receive it at all.	Engine will only idle.
3328 191 9	Transmission output shaft speed - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the transmission output shaft speed sensor.	None on performance.
3342 4752 18	Engine exhaust gas recirculation cooler efficiency - Data valid but below normal operating range - Moderately severe level. The EGR cooler is not cooling the recirculated exhaust gas sufficiently.	None on performance.
3343 5285 18	Engine charge-air cooler efficiency - Data valid but below normal operating range - Moderately severe level. The engine charge air cooler is not cooling the intake air flow sufficiently.	None on performance.
3361 102 10	Intake manifold 1 pressure - Abnormal rate of change. The VGT position reading is stuck.	Possible reduced engine performance.
3366 111 18	Coolant level - Data valid but below normal operating range - Moderately severe level. Very low engine coolant level detected.	None on performance.
3374 1818 31	Roll over protection brake control active - Condition exists. The ECM received a message from the anti-lock braking (ABS) controller, inhibiting cruise control operation.	Cruise control could possibly not operate.
3375 5397 31	Aftertreatment diesel particulate filter regeneration too frequent - Condition exists. The system has detected the need for an active regeneration has occurred too soon following the last active regeneration.	None on performance.
3376 5319 31	Aftertreatment diesel particulate filter incomplete regeneration - Condition exists. The system has detected that the aftertreatment diesel particulate filter differential pressure is too high following an active regeneration.	Possible frequent need for aftertreatment regeneration.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3382 3058 18	Engine exhaust gas recirculation (EGR) system - Data valid but below normal operating range - Moderately severe level. Measured egr flow is lower than commanded.	Possible reduced engine performance.
3383 3058 16	Engine exhaust gas recirculation (EGR) system - Data valid but above normal operating range - Moderately severe Level. Measured EGR flow is higher than commanded.	Possible reduced engine performance.
3394 4766 18	Aftertreatment 1 diesel oxidation catalyst outlet gas temperature - Data valid but below normal operating range - Moderately severe level. The diesel oxidation catalyst outlet Temperature is below the operating limit	Possible frequent need for aftertreatment regeneration.
3396 3750 31	Diesel particulate filter 1 conditions not met for active regeneration - Condition exists. The aftertreatment temperatures are not warm enough for aftertreatment injection.	Possible frequent need for aftertreatment regeneration.
3418 191 19	Transmission output shaft speed - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the transmission output shaft speed sensor.	None on performance.
3422 4344 3	Aftertreatment diesel exhaust fluid line heater 3 circuit - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater 3 circuit.	Possible reduced engine performance.
3423 4344 4	Aftertreatment diesel exhaust fluid line heater 3 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater 3 circuit.	Possible reduced engine performance.
3425 4344 5	Aftertreatment diesel exhaust fluid line heater 3 circuit - Current below normal or open circuit. Open circuit detected in the diesel exhaust fluid line heater 3.	Possible reduced engine performance.
3488 563 9	Anti-lock braking (ABS) controller - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the anti- lock braking (ABS) controller.	None on performance.
3492 251 10	Real time clock - Abnormal rate of change. The real time clock indicates a stuck engine off timer.	None on performance.
3494 1081 7	Engine wait to start lamp - Mechanical system not responding or out of adjustment. Wait to Start lamp has malfunction.	None on performance.
3497 1761 17	Aftertreatment diesel exhaust fluid tank level - Data valid but below normal operating range - Least severe level. The aftertreatment diesel exhaust fluid tank level is low.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3498 1761 18	Aftertreatment diesel exhaust fluid tank level - Data valid but below normal operating range - Moderately severe level. The aftertreatment diesel exhaust fluid tank level is very low.	None on performance.
3525 84 19	Wheel-based vehicle speed - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the wheel-based vehicle speed sensor.	Engine speed limited to maximum engine speed without VSS parameter value. Cruise control, gear-down protection, and road speed governor will not work.
3526 84 9	Wheel-Based vehicle speed - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the wheel- based vehicle speed sensor.	Engine speed limited to maximum engine speed without VSS parameter value. Cruise control, gear-down protection, and road speed governor will not work.
3527 558 19	Accelerator pedal or lever idle validation switch - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the accelerator pedal or lever idle validation switch.	The engine will only idle.
3528 558 9	Accelerator pedal or lever idle validation switch - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the accelerator pedal or lever idle validation switch.	Engine will only idle.
3531 171 9	Ambient air temperature - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the ambient air temperature sensor.	Possible reduced engine performance.
3532 171 19	Ambient air temperature - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the ambient air temperature sensor.	Possible reduced engine performance.
3539 51 3	Engine intake throttle actuator position sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the engine intake air throttle position sensor circuit.	Possible reduced engine performance.
3541 51 4	Engine intake throttle actuator position sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the engine intake air throttle position sensor circuit.	Possible reduced engine performance.
3542 51 2	Engine intake throttle actuator position sensor - Data erratic, intermittent or incorrect. The engine intake air throttle posistion feedback is erratic or incorrect.	Possible reduced engine performance.
3545 3226 10	Aftertreatment outlet NOx sensor circuit - Abnormal rate of change. The aftertreatment outlet NOx sensor reading is not valid.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3547 4096 31	Aftertreatment diesel exhaust fluid tank empty - Condition exists. The diesel exhaust fluid tank is empty.	Possible reduced engine performance.
3555 1081 9	Engine wait to start lamp - Abnormal update rate. A loss of communication has been detected.	None on performance.
3556 1081 19	Engine wait to start lamp - Received network data in error. The ECM received an invalid signal on the SAE J1939 datalink.	None on performance.
3558 3361 3	Aftertreatment diesel exhaust fluid dosing unit - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit.	Possible reduced engine performance.
3559 3361 4	Aftertreatment diesel exhaust fluid dosing unit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit.	Possible reduced engine performance.
3562 5491 3	Aftertreatment diesel exhaust fluid line heater relay - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater relay.	Possible reduced engine performance.
3563 5491 4	Aftertreatment diesel exhaust fluid line heater relay - Voltage below normal or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater relay.	Possible reduced engine performance.
3567 5394 5	Aftertreatment diesel exhaust fluid dosing valve - Current below normal or open circuit. A circuit error has been detected in the aftertreatment diesel exhaust fluid dosing valve circuit.	Possible reduced engine performance.
3568 5394 7	Aftertreatment diesel exhaust fluid (DEF) Dosing valve - Mechanical system not responding or out of adjustment. A mechanical malfunction has been detected in the DEF dosing valve.	Possible reduced engine performance.
3571 4334 3	Aftertreatment diesel exhaust fluid pressure sensor - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid pressure sensor circuit.	Possible reduced engine performance.
3572 4334 4	Aftertreatment diesel exhaust fluid pressure sensor - Voltage below normal or shorted to low source. Low signal voltage detected at the diesel exhaust fluid pressure sensor circuit.	Possible reduced engine performance.
3574 4334 18	Aftertreatment diesel exhaust fluid pressure sensor - Data valid but below normal operating range - Moderately severe level. Low diesel exhaust fluid pressure has been detected in the dosing unit.	Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3575 4334 16	Aftertreatment diesel exhaust fluid pressure sensor - Data valid but above normal operating range - Moderately severe level. The diesel exhaust fluid dosing unit has detected a blockage in the diesel exhaust fluid return flow.	Possible reduced engine performance.
3577 4376 3	Aftertreatment diesel exhaust fluid return valve - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid return valve.	Possible reduced engine performance.
3578 4376 4	Aftertreatment diesel exhaust fluid return valve - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid return valve.	Possible reduced engine performance.
3582 4364 18	Aftertreatment SCR catalyst conversion efficiency - Data valid but below normal operating range - Moderately severe level. NOx conversion across the SCR catalyst is too low.	Possible reduced engine performance.
3583 5031 10	Aftertreatment outlet NOx sensor heater - Abnormal rate of change. The aftertreatment outlet NOx sensor heater is unable to maintain its normal operating temperature.	None on performance.
3596 4334 2	Aftertreatment diesel exhaust fluid pressure sensor - Data erratic, intermittent, or incorrect. The diesel exhaust fluid pressure sensor has reported a reading too high or low for the operating conditions.	Possible reduced engine performance.
3649 5024 10	Aftertreatment Intake NOx sensor heater - Abnormal rate of change. The aftertreatment intake NOx sensor heater is unable to maintain its normal operating temperature.	None on performance.
3681 3228 2	Aftertreatment outlet NOx sensor power supply - Data erratic, intermittent, or incorrect. The aftertreatment outlet NOx sensor indicates that the power supply to the sensor is incorrect.	None on performance.
3682 3218 2	Aftertreatment Intake NOx sensor power supply - Data erratic, entermittent or encorrect. The aftertreatment intake NOx sensor indicates that the power supply to the sensor is incorrect.	None on performance.
3697 630 12	Engine control module calibration memory - Bad intelligent device or component. Error internal to the ECM related to engine software failures.	Engine may not start or may be difficult to start.
3712 5246 0	Aftertreatment SCR operator inducement - Data valid but above normal operational range - Most severe level. Critical SCR related fault codes have been active for an extended period of time and require immediate attention.	Vehicle speed will be limited to 8 km [5 miles] per hour.

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3714 1569 31	Engine protection torque derate - Condition exists. Critical fault codes related to engine operation are active.	Possible reduced engine performance.
3715 188 16	Engine speed at idle - Data valid but below normal operating range - Moderately severe level. The engine speed at idle has exceeded the governed idle speed.	Possible reduced engine performance.
3716 188 18	Engine speed at idle - Data valid but below normal operational range - Moderately severe level. Engine is not maintaining the governed idle speed.	None on performance.
3717 3226 13	Aftertreatment outlet NOx sensor - Out of calibration. A calibration mismatch between the aftertreatment outlet NOx sensor and the ECM has been detected.	None on performance.
3718 3216 13	Aftertreatment intake NOx - Out of calibration. A calibration mismatch between the aftertreatment intake NOx sensor and the ECM has been detected.	None on performance.
3724 168 17	Battery 1 voltage - Data valid but below normal operating range - Least severe level. Low voltage to the EGR valve device driver has been detected.	Possible reduced engine performance.
3725 3216 10	Aftertreatment Intake NOx sensor - Abnormal rate of change. The aftertreatment intake NOx sensor reading is not valid.	None on performance.
3727 5571 7	High pressure common rail fuel pressure relief valve - Mechanical system not responding or out of adjustment. The fuel rail high-pressure relief valve has opened at a lower than expected pressure.	Possible reduced engine performance.
3737 1675 31	Engine starter mode overcrank protection - Condition exists. The starter motor has been temporarily disabled in order to prevent starter damage.	Starter operation is prohibited until the starter motor has adequately cooled.
3741 5571 0	High pressure common rail fuel pressure relief valve - Data valid but above normal operational range - Most severe level. The fuel rail pressure relief valve has opened due to high fuel rail pressure.	Engine may run rough, may stop running, may not start, or may be difficult to start.
3749 3226 20	Aftertreatment outlet NOx sensor - Data not rational - Drifted high. An offset in the outlet NOx sensor reading has been detected.	None on performance.
3838 2978 9	Estimated engine parasitic losses - Percent torque - Abnormal update rate. A loss of communication has been detected.	None on performance.
3843 5603 9	Cruise control disable command - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the cruise control.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3844 5605 31	Cruise control pause command - Condition exists. The adaptive cruise control has dropped out and must be manually engaged.	Cruise control could possibly not operate.
3845 5603 31	Cruise control disable command - Condition exists. The adaptive cruise control has dropped out and must be manually engaged.	Cruise control could possibly not operate.
3899 5848 4	Aftertreatment 1 SCR Intermediate NH3 sensor - Voltage below normal, or shorted to low source. A circuit error has been detected in the NH3 sensor.	None on performance.
3911 5848 9	Aftertreatment SCR Intermediate NH3 sensor - Abnormal update rate. Loss of communication with the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3912 5853 10	Aftertreatment SCR Intermediate NH3 sensor heater - Abnormal rate of change. A malfunction of the aftertreatment SCR intermediate NH3 sensor heater has been detected.	Possible reduced engine performance.
3932 5851 16	Aftertreatment SCR Intermediate NH3 gas sensor power supply - Data valid but above normal operating range - Moderately severe level. High battery voltage supply detected at the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3933 5851 18	Aftertreatment SCR Intermediate NH3 gas sensor power supply - Data valid but below normal operating range - Moderately severe level. Low battery voltage supply detected at the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3934 5851 2	Aftertreatment SCR Intermediate NH3 gas sensor power supply - Data erratic, intermittent or incorrect. Intermittent battery voltage supply detected at the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3935 5848 13	Aftertreatment SCR Intermediate NH3 sensor - Out of calibration. Incorrect trim resistance has been detected in the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3936 5848 12	Aftertreatment SCR Intermediate NH3 sensor - Bad intelligent device or component. An internal error of the aftertreatment SCR intermediate NH3 sensor has been detected.	Possible reduced engine performance.
3937 5848 10	Aftertreatment 1 SCR Intermediate NH3 sensor - Abnormal rate of change. The aftertreatment SCR intermediate NH3 sensor reading is NOT valid.	Possible reduced engine performance.

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)	
4149 2623 8	Accelerator pedal or lever position sensor 2 circuit frequency - Abnormal frequency or pulse width or period. The accelerator pedal position sensor reading is out of range.	The engine will operate in Limp Home mode.	
4151 5742 9	Aftertreatment diesel particulate filter temperature sensor module - Abnormal update rate. No communications on the J1939 data link between the ECM and the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.	
4152 5743 9	Aftertreatment selective catalytic reduction temperature sensor module - Abnormal update rate. No communications on the J1939 data link between the ECM and the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.	
4155 5746 3	Aftertreatment 1 diesel exhaust fluid dosing unit heater relay - Voltage above normal, or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit heater relay circuit.	Possible reduced engine performance.	
4156 5746 4	Aftertreatment 1 diesel exhaust fluid dosing unit heater relay - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit heater relay circuit.	Possible reduced engine performance.	
4157 4376 7	Aftertreatment diesel exhaust fluid return valve - Mechanical system not responding or out of adjustment. A stuck aftertreatment diesel exhaust fluid return valve has been detected.	None on performance.	
4158 5742 12	Aftertreatment diesel particulate filter temperature sensor module - Bad intelligent device or component. An internal error has been detected in the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.	
4159 5743 12	Aftertreatment selective catalytic reduction temperature sensor module - Bad intelligent device or component. An internal error has been detected in the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.	
4161 5742 3	Aftertreatment diesel particulate filter temperature sensor module - Voltage above normal, or shorted to high source. High battery supply voltage detected at the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.	
4162 5742 4	Aftertreatment diesel particulate filter temperature sensor module - Voltage below normal, or shorted to low source. Low battery supply voltage detected at the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.	

Fault code J1939 SPN J1939 FMI	9 SPN Reason Effect (only when fault code is active)	
4163 5742 16	Aftertreatment diesel particulate filter temperature sensor module- Data valid but above normal operating range - Moderately severe level. High internal temperature detected in the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.
4164 5743 3	Aftertreatment selective catalytic reduction temperature sensor module - Voltage above normal, or shorted to high source. High battery supply voltage detected at the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4165 5743 4	Aftertreatment selective catalytic reduction temperature sensor module - Voltage below normal, or shorted to low source. Low battery supply voltage detected at the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4166 5743 16	Aftertreatment selective catalytic reduction temperature sensor module - Data valid but above normal operating range - Moderately severe level. High internal temperature detected in the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4168 5745 3	Aftertreatment diesel exhaust fluid dosing unit heater - Voltage above normal, or shorted to high source. The aftertreatment diesel exhasut fluid dosing unit heater is detected to be stuck on.	None on performance.
4169 5745 5	Aftertreatment diesel exhaust fluid dosing unit heater - Voltage below normal, or shorted to low source. The aftertreatment diesel exhasut fluid dosing unit heater is detected to be stuck off.	Possible reduced engine performance.
4171 5745 18	Aftertreatment diesel exhaust fluid dosing unit heater - Data valid but below normal operating range - Moderately severe level. The aftertreatment diesel exhaust fluid dosing unit failed to thaw.	Possible reduced engine performance.
4213 3695 2	Aftertreatment diesel particulate filter regeneration inhibit switch - Data erratic, intermittent or incorrect. The diesel particulate filter regeneration permit switch is stuck in the OFF or INHIBIT position.	Possible frequent need for aftertreatment regeneration.
4215 563 31	Anti-lock braking (ABS) Active - Condition exists. Cruise control was paused due to an anti-wheel slip message from teh ABS controller.	Adaptive cruise control will not operate. Standard cruise control may not operate.
4244 4337 2	Aftertreatment diesel exhaust fluid dosing temperature - Data erratic, intermittent or incorrect. The aftertreatment diesel exhaust fluid dosing temperature is irrational.	None on performance.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)	
4245 5798 2	Aftertreatment diesel exhaust fluid dosing unit heater temperature - Data erratic, intermittent or incorrect. The aftertreatment diesel exhaust fluid dosing unit heater temperature is irrational.	None on performance.	
4249 4337 10	Aftertreatment diesel exhaust fluid dosing temperature - Abnormal rate of change. The aftertreatment diesel exhaust fluid dosing unit temperature is stuck.	None on performance.	
4251 5798 10	Aftertreatment 1 diesel exhaust fluid dosing unit heater temperature - Abnormal rate of change. The aftertreatment diesel exhaust fluid dosing unit heater temperature sensor reading is stuck.	None on performance.	
4252 1081 31	Engine wait to start lamp - Condition exists. The received signal does not match the commanded signal.	None on performance.	
4259 5742 11	5742 known. Intermittent battery voltage supply		
4261 5743 11	Aftertreatment selective catalytic reduction temperature sensor module - Root cause not known. Intermittent battery voltage supply detected at the aftertreatment SCR temperature sensor module.	ot y	
4279 5848 21	Aftertreatment 1 SCR Intermediate NH3 - Data not rational - Drifted low. An in range low failure has been detected.	Possible reduced engine performance.	
4281 5848 2	Aftertreatment SCR Intermediate NH3 - Data erratic, intermittent or incorrect. The aftertreatment SCR intermediate NH3 sensor reading is stuck.	None on performance.	
4284 5793 9	Desired engine fueling state - Abnormal update rate. A valid message from the transmission ECU has NOT been received.	Engine may not start or may be difficult to start.	
4289 91 8	Accelerator pedal or lever position sensor 1 circuit frequency - Abnormal frequency or pulse width or period. The accelerator pedal position sensor reading is out of range.	The engine will operate in limp home mode.	
4452 520668 31	Aftertreatment outlet NOx sensor closed loop operation - Condition exists. The maximum dosing adjustment has been reached.	Possible reduced engine performance.	
4453 520669 31	Aftertreatment intermediate NH3 sensor closed loop operation - Condition exists. The maximum dosing adjustment has been reached.	None on performance.	
4517 237 13	Vehicle Identification number - Out of calibration. The vehicle identification number has not been programmed into the ECM.	None on performance.	

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
4518 5862 3	Aftertreatment SCR Intermediate gas temperature sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the aftreatment SCR intermediate temperature sensor circuit.	Possible reduced engine performance.
4519 5862 4	Aftertreatment SCR Intermediate gas temperature sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment SCR intermediate temperature sensor circuit.	Possible reduced engine performance.
4521 5862 2	Aftertreatment SCR Intermediate gas temperature sensor - Data erratic, intermittent or incorrect. The aftertreatment SCR intermediate temperature sensor reading is irrational.	Possible reduced engine performance.
4524 5862 0 Aftertreatment SCR intermediate gas temperature - Data valid but above normal operational range - Most severe level. The aftertreatment SCR intermediate temperature sensor reading is above the engine protection limit.		Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
4525 5862 16	Aftertreatment 1 SCR intermediate gas temperature - Data valid but above normal operating range - Moderately severe level. High SCR Intermediate temperature detected.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
4526 521 2	Brake pedal position - Data erratic, intermittent or incorrect. The values of the 2 brake switch signals do not match.	None on performance.
4572 3031 9	Aftertreatment diesel exhaust fluid tank temperature - Abnormal update rate. The ECM lost communication with the aftertreatment diesel exhaust fluid tank temperature sensor.	Possible reduced engine performance.
4584 3936 14	Aftertreatment diesel particulate filter system - Special instructions. The incorrect aftertreatment diesel particulate filter system has been installed with the engine.	Engine will be shut down.
4585 4792 14	Aftertreatment 1 SCR catalyst system - Special instructions. The incorrect SCR system has been Installed.	Engine will be shut down.
4612 520701 31	Engine intake manifold pressure system monitor - Condition exists. The engine is unable to meet the air handling system commands.	Possible reduced engine performance.
4658Aftertreatment SCR actual dosing reagent quantity - Data valid but below normal operating range - Moderately severe level. Low aftertreatment diesel exhaust fluid flow detected.		Possible reduced engine performance.

Fault code J1939 SPN J1939 FMI	PN Reason Effect (only when fault code is active)	
4691 5585 18	Engine injector metering rail 1 cranking pressure - Data valid but below normal operating range - Moderately severe level. The fuel rail pressure during cranking is too low for the engine to start.	Engine may not start or may be difficult to start.
4713 5357 31	Engine fuel injection quantity error for multiple cylinders - Condition exists. A malfunction of all fuel injectors has been detected.	Engine may run rough, may stop running, may not start, or may be difficult to start.
4726 1239 16	Engine fuel leakage - Data valid but above normal operating range - Moderately severe level. Fuel rail pressure decay has been detected.	Engine may run rough, may stop running, may not start, or may be difficult to start.
4727 157 15	Injector metering rail 1 pressure - Data valid but above normal operating range - Least severe level. A self pumping condition has been detected in the fuel system.	Possible reduced engine performance.
4731 3031 13	Aftertreatment diesel exhaust fluid tank temperature sensor - Out of calibration. The received datalink message was not valid.	Possible reduced engine performance.
4732 1761 13	Aftertreatment diesel exhaust fluid tank level sensor - Out of calibration. The received datalink message was not valid.	None on performance.
4739 1761 11	Aftertreatment 1 diesel exhaust fluid tank level sensor - Root cause not known. An unknown error has been detected with the aftertreatment diesel exhaust fluid tank level sensor.	Possible reduced engine performance.
4769 1761 10	Aftertreatment 1 diesel exhaust fluid tank level sensor - Abnormal rate of change. A valid diesel exhaust fluid tank level reading has NOT been received.	Possible reduced engine performance.
4865 6303 3	Engine coolant level 2 sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the engine coolant level 2 circuit.	None on performance.
4866 6303 4	Engine coolant level 2 sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the engine coolant level 2 circuit.	None on performance.
4956 520750 13	Engine variable geometry turbo (VGT) software - Out of calibration. VGT software does not match application.	Possible reduced engine performance.
4957 520750 31	Engine variable geometry turbo (VGT) software - Condition exists. The VGT actuator and ECM software is not compatible.	Possible reduced engine performance.

3) DEFINITION OF OPERATING MODES

(1) Normal

There's no failure detected in the transmission system or the failure has no or slight effects on transmission control. TCU will work without or in special cases with little limitations. (See following table)

(2) Substitute clutch control

TCU can't change the gears or the direction under the control of the normal clutch modulation.

TCU uses the substitute strategy for clutch control. All modulations are only time controlled. (Comparable with EST 25)

(3) Limp-home

The detected failure in the system has strong limitations to transmission control. TCU can engage only one gear in each direction. In some cases only one direction will be possible.

TCU will shift the transmission into neutral at the first occurrence of the failure. First, the operator must shift the gear selector into neutral position.

If output speed is less than a threshold for neutral to gear and the operator shifts the gear selector into forward or reverse, the TCU will select the limp-home gear.

If output speed is less than a threshold for reversal speed and TCU has changed into the limphome gear and the operator selects a shuttle shift, TCU will shift immediately into the limp-home gear of the selected direction.

If output speed is greater than the threshold, TCU will shift the transmission into neutral. The operator has to slow down the vehicle and must shift the gear selector into neutral position.

(4) Transmission-shutdown

TCU has detected a severe failure that disables control of the transmission.

TCU will shut off the solenoid valves for the clutches and also the common power supply (VPS1).

Transmission shifts to neutral. The park brake will operate normally, also the other functions which use ADM1 to ADM8.

The operator has to slow down the vehicle. The transmission will stay in neutral.

(5) TCU-shutdown

TCU has detected a severe failure that disables control of system.

TCU will shut off all solenoid valves and also both common power supplies (VPS1, VPS2). The park brake will engage, also functions are disabled which use ADM 1 to ADM 8. The transmission will stay in neutral.

* Abbreviations

- OC : Open circuit
- SC : Short circuit

OP mode : Operating mode

- TCU : Transmission control unit
- EEC : Electronic engine controller
- PTO : Power take off

4) TRANSMISSION FAULT CODES

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
10	Logical error at direction select signal 3rd shift lever TCU detected a wrong signal combination for the direction • Cable from shift lever 3 to TCU is broken • Cable is defective and is contacted to battery voltage or vehicle ground • Shift lever is defective	neutral if selector active	 Check the cables from TCU to shift lever 3 Check signal combinations of shift lever positions F-N-R If shift lever is a CAN shift lever check CAN cable/shifter/device Fault is cleared if TCU detects a valid neutral signal for the direction at the shift lever
11	 Logical error at gear range signal TCU detected a wrong signal combination for the gear range Cable from shift lever to TCU is broken Cable is defective and is contacted to battery voltage or vehicle ground Shift lever is defective 	TCU shifts transmission to neutral OP mode : Transmission shutdown	 Check the cables from TCU to shift lever Check signal combinations of shift lever positions for gear range Failure cannot be detected in systems with DW2/DW3 shift lever. Fault is taken back if TCU detects a valid signal for the position
12	Logical error at direction select signal TCU detected a wrong signal combination for the direction • Cable from shift lever to TCU is broken • Cable is defective and is contacted to battery voltage or vehicle ground • Shift lever is defective	TCU shifts transmission to neutral OP mode : Transmission shutdown	 Check the cables from TCU to shift lever Check signal combinations of shift lever positions F-N-R Fault is taken back if TCU detects a valid signal for the direction at the shift lever
13	Logical error at engine derating device TCU detected no reaction of engine while derating device active	After selecting neutral, TCU change to OP mode limp home	 Check engine derating device This fault is reset after power up of TCU
15	Logical error at direction select signal 2 shift lever TCU detected a wrong signal combination for the direction • Cable from shift lever 2 to TCU is broken • Cable is defective and is contacted to battery voltage or vehicle ground • Shift lever is defective	neutral if selector active	 Check the cables from TCU to shift lever 2 Check signal combinations of shift lever positions F-N-R Fault is taken back if TCU detects a valid neutral signal for the direction at the shift lever
17	 S.C. to ground at customer specific function No. 1 (ride control) TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is contacted to vehicle ground Customer specific function No. 1 device has an internal defect Connector pin is contacted to vehicle ground 		 Check the cable from TCU to customer specific function No. 1 device Check the connectors from customer specific function No. 1 to TCU Check the resistance of customer specific function No. 1 device

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
18	 S.C. to battery voltage at customer specific function No. 1 (ride control) TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and is contacted to battery voltage Customer specific function No. 1 device has an internal defect Connector pin is contacted to battery voltage 	Customer specific	 Check the cable from TCU to customer specific function No. 1 device Check the connectors from customer specific function No. 1 to TCU Check the resistance of customer specific function No. 1 device
19	 O.C. at customer specific function No. 1 (ride control) TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Customer specific function No. 1 device has an internal defect Connector has no connection to TCU 	Customer specific	 Check the cable from TCU to customer specific function No. 1 device Check the connectors from customer specific function No. 1 device to TCU Check the resistance of customer specific function No. 1 device
21	 S.C. to battery voltage at clutch cut off input The measured voltage is too high: Cable is defective and is contacted to battery voltage Clutch cut off sensor has an internal defect Connector pin is contacted to battery voltage 	disabled OP mode : Normal	 Check the cable from TCU to the sensor Check the connectors Check the clutch cut off sensor
22	 S.C. to ground or O.C. at clutch cut off input The measured voltage is too low: Cable is defective and is contacted to vehicle ground Cable has no connection to TCU Clutch cut off sensor has an internal defect Connector pin is contacted to vehicle ground or is broken 	disabled OP mode : Normal	 Check the cable from TCU to the sensor Check the connectors Check the clutch cut off sensor
25	 S.C. to battery voltage or O.C. at transmission sump temperature sensor input The measured voltage is too high: Cable is defective and is contacted to battery voltage Cable has no connection to TCU Temperature sensor has an internal defect Connector pin is contacted to battery voltage or is broken 	default temperature OP mode : Normal	 Check the cable from TCU to the sensor Check the connectors Check the temperature sensor

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
26	 S.C. to battery voltage or O.C. at transmission sump temperature sensor input The measured voltage is too low: Cable is defective and is contacted to vehicle ground Temperature sensor has an internal defect Connector pin is contacted to vehicle ground 	No reaction, TCU uses default temperature OP mode : Normal	 Check the cable from TCU to the sensor Check the connectors Check the temperature sensor
27	 S.C. to battery voltage or O.C. at retarder temperature sensor input The measured voltage is too high: Cable is defective and is contacted to battery voltage Cable has no connection to TCU Temperature sensor has an internal defect Connector pin is contacted to battery voltage or is broken 	No reaction, TCU uses default temperature OP mode : Normal	 Check the cable from TCU to the sensor Check the connectors Check the temperature sensor
28	 S.C. to ground at retarder temperature sensor input The measured voltage is too low: Cable is defective and is contacted to vehicle ground Temperature sensor has an internal defect Connector pin is contacted to vehicle ground 	No reaction, TCU uses default temperature OP mode : Normal	 Check the cable from TCU to the sensor Check the connectors Check the temperature sensor
31	 S.C. to battery voltage or O.C. at engine speed input TCU measures a voltage higher than 7.00V at speed input pin Cable is defective and is contacted to battery voltage Cable has no connection to TCU Speed sensor has an internal defect Connector pin is contacted to battery voltage or has no contact 	control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor
32	 S.C. to ground at engine speed input TCU measures a voltage less than 0.45V at speed input pin Cable/connector is defective and is contacted to vehicle ground Speed sensor has an internal defect 	OP mode : Substitute clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor
33	Logical error at engine speed input TCU measures a engine speed over a threshold and the next moment the measured speed is zero • Cable/connector is defective and has bad contact • Speed sensor has an internal defect • Sensor gap has the wrong size	OP mode : Substitute clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor Check the sensor gap This fault is reset after power up of TCU

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
34	 S.C. to battery voltage or O.C. at turbine speed input TCU measures a voltage higher than 7.00V at speed input pin Cable is defective and is contacted to vehicle battery voltage Cable has no connection to TCU Speed sensor has an internal defect Connector pin is contacted to battery voltage or has no contact 	control If a failure is existing at output speed,	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor
35	S.C. to ground at turbine speed input TCU measures a voltage less than 0.45V at speed input pin • Cable/connector is defective and is contacted to vehicle ground • Speed sensor has an internal defect	OP mode : Substitute clutch control If a failure is existing at output speed, TCU shifts to neutral OP mode : Limp home	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor This fault is reset after power up of TCU
36	Logical error at turbine speed input TCU measures a turbine speed over a threshold and at the next moment the measured speed is zero • Cable/connector is defective and has bad contact • Speed sensor has an internal defect • Sensor gap has the wrong size	output speed,	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor Check the sensor gap
37	 S.C. to battery voltage or O.C. at internal speed input TCU measures a voltage higher than 7.00V at speed input pin Cable is defective and is contacted to vehicle battery voltage Cable has no connection to TCU Speed sensor has an internal defect Connector pin is contacted to battery voltage or has no contact 	OP mode : Substitute clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor
38	 S.C. to ground at turbine speed input TCU measures a voltage less than 0.45V at speed input pin Cable/connector is defective and is contacted to vehicle ground Speed sensor has an internal defect 	OP mode : Substitute clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor
39	Logical error at internal speed input TCU measures a internal speed over a threshold and at the next moment the measured speed is zero · Cable/connector is defective and has bad contact · Speed sensor has an internal defect · Sensor gap has the wrong size	OP mode : Substitute clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor Check the sensor gap This fault is reset after power up of TCU
ЗА	 S.C. to battery voltage or O.C. at output speed input TCU measures a voltage higher than 12.5V at speed input pin Cable is defective and is contacted to battery voltage Cable has no connection to TCU Speed sensor has an internal defect Connector pin is contacted to battery voltage or has no contact 	selection OP mode : S u b s t i t u t e clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor

Fault code	Mooning of the foult and		
(Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
3B	 S.C. to ground at output speed input TCU measures a voltage less than 1.00V at speed input pin Cable/connector is defective and is contacted to vehicle ground Speed sensor has an internal defect 	Special mode for gear selection OP mode : Substitute clutch control If a failure is existing at turbine speed, TCU shifts to neutral OP mode : Limp home	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor
3C	Logical error at output speed input TCU measures a turbine speed over a threshold and at the next moment the measured speed is zero · Cable/connector is defective and has bad contact · Speed sensor has an internal defect · Sensor gap has the wrong size	OP mode : Substitute clutch control	 Check the cable from TCU to the sensor Check the connectors Check the speed sensor Check the sensor gap This fault is reset after power up of TCU
3D	Turbine speed zero doesn't fit to other speed signals	-	· Not used
3E	Output speed zero doesn't fit to other speed signals If transmission is not neutral and the shifting has finished, TCU measures output speed zero and turbine speed or internal speed not equal to zero. • Speed sensor has an internal defect • Sensor gap has the wrong size	Selection OP mode : Substitute clutch control If a failure is existing at	 Check the sensor signal of output speed sensor Check the sensor gap of output speed sensor Check the cable from TCU to the sensor This fault is reset after power up of TCU
54	DCT1 timeout Timeout of CAN-message DCT1 from display computer • Interference on CAN-Bus • CAN wire/connector is broken • CAN wire/connector is defective and has contact to vehicle ground or battery voltage	OP mode : Normal	 Check display computer Check wire of CAN-Bus Check cable to display computer
55	JSS timeout Timeout of CAN-message JSS from joystick steering controller • Interference on CAN-Bus • CAN wire/connector is broken • CAN wire/connector is defective and has contact to vehicle ground or battery voltage	TCU shifts to neutral while joystick steering is active OP mode : Normal	 Check joystick steering controller Check wire of CAN-Bus Check cable to joystick steering controller
56	Engine CONF timeout Timeout of CAN-message engine CONF from engine controller • Interference on CAN-Bus • CAN wire/connector is broken • CAN wire/connector is defective and has contact to vehicle ground or battery voltage	OP mode : Substitute clutch control	 Check engine controller Check wire of CAN-Bus Check cable to engine controller

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
57	EEC1 timeout Timeout of CAN-message EEC1 from EEC controller • Interference on CAN-Bus • CAN wire/connector is broken • CAN wire/connector is defective and has contact to vehicle ground or battery voltage	OP mode : Substitute clutch control	 Check EEC controller Check wire of CAN-Bus Check cable to EEC controller
58	EEC3 timeout Timeout of CAN-message EEC3 from EEC controller • Interference on CAN-Bus • CAN wire/connector is broken • CAN wire/connector is defective an has contact to vehicle ground or battery voltage	OP mode : Substitute clutch control	 Check EEC controller Check wire of CAN-Bus Check cable to EEC controller
5C	Auto downshift signal CAN signal for automatic downshift is defective • Cluster controller is defective • Interference on CAN-Bus	No reaction	 Check cluster controller Check wire of CAN-Bus Check cable to cluster controller
5D	Manual downshift signal CAN signal for manual downshift is defective • Cluster controller is defective • Interference on CAN-Bus	No reaction	 Check cluster controller Check wire of CAN-Bus Check cable to controller
5E	CCO request signal CAN signal for CCO request is defective · Cluster controller is defective · Interference on CAN-Bus	No reaction	 Check cluster controller Check wire of CAN-Bus Check cable to controller
61	AEB request signal CAN signal for AEB request is defective • I/O controller is defective • Interference on CAN-Bus	No reaction OP mode : Normal	 Check I/O controller, Omron master Check wire of CAN-Bus Check cable to I/O controller Omron master
64	Sarting gear signal CAN signal for starting gear is defective · I/O controller is defective (illegal starting gear) · Interference on CAN-Bus	No reaction. TCU uses default starting gear OP mode : Normal	 Check I/O controller Check wire of CAN-Bus Check cable to I/O controller
65	Engine torque signal CAN signal for engine torque is defective • Engine controller is defective • Interference on CAN-Bus	OP mode : Substitute clutch control	 Check engine controller Check wire of CAN-Bus Check cable to engine controller
69	Reference engine torque signal CAN signal for reference of engine torque is defective · Engine controller is defective · Interference on CAN-Bus	OP mode : Substitute clutch control	 Check engine controller Check wire of CAN-Bus Check cable to engine controller
6A	Actual engine torque signal CAN signal for actual engine torque is defective • Engine controller is defective • Interference on CAN-Bus	OP mode : Substitute clutch control	 Check engine controller Check wire of CAN-Bus Check cable to engine controller

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
6E	EEC2 timeout Timeout of CAN-message EEC2 from EEC controller • Interference on CAN-Bus • CAN wire/connector is broken • CAN wire/connector is defective and has contact to vehicle ground or battery voltage	No reaction, TCU uses default signal accelerator pedal in idle position OP mode : Normal	 Check EEC controller Check wire of CAN-Bus Check cable to EEC controller
71	 S.C. to battery voltage at clutch K1 The measured resistance value of the valve is out of limit, the voltage at K1 valve is too high Cable/connector is defective and has contact to battery voltage Cable/connector is defective and has contact to another regulator output of the TCU Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from TCU to the gearbox Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
72	 S.C. to ground at clutch K1 The measured resistance value of the valve is out of limit, the voltage at K1 valve is too low Cable/connector is defective and has contact to vehicle ground Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
73	 O.C. at clutch K1 The measured resistance value of the valve is out of limit Cable/connector is defective and has no contact to TCU Regulator has an internal defect 	If failure at another clutch	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
74	 S.C. to battery voltage at clutch K2 The measured resistance value of the valve is out of limit, the voltage at K2 valve is too high Cable/connector is defective and has contact to battery voltage Cable/connector is defective and has contact to another regulator output of the TCU Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
75	 S.C. to ground at clutch K2 The measured resistance value of the valve is out of limit, the voltage at K2 valve is too low Cable/connector is defective and has contact to vehicle ground Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
76	 O.C. at clutch K2 The measured resistance value of the valve is out of limit Cable/connector is defective and has no contact to TCU Regulator has an internal defect 	If failure at another clutch	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
77	 S.C. to battery voltage at clutch K3 The measured resistance value of the valve is out of limit, the voltage at K3 valve is too high Cable/connector is defective and has contact to battery voltage Cable/connector is defective and has contact to another regulator output of the TCU Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
78	 S.C. to ground at clutch K3 The measured resistance value of the valve is out of limit, the voltage at K3 valve is too low Cable/connector is defective and has contact to vehicle ground Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
79	 O.C. at clutch K3 The measured resistance value of the valve is out of limit Cable/connector is defective and has no contact to TCU Regulator has an internal defect 	If failure at another clutch	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
7D	 S.C. ground at engine derating device Cable is defective and is contacted to vehicle ground Engine derating device has an internal defect Connector pin is contacted to vehicle ground 	TCU power down even if fault vanishes (Loose connection)	Check the cable from TCU to the engine derating device
7E	 S.C. battery voltage at engine derating device Cable/connector is defective and is contacted to battery voltage Engine derating device has an internal defect 	No reaction OP mode : Normal	 Check the cable from TCU to the engine derating device Check the connectors from backup alarm device to TCU Check the resistance* of backup alarm device * See page 3-71

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
7F	 O.C. at engine derating device TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Engine derating device has an internal defect 	No reaction OP mode : Normal	 Check the cable from TCU to the engine derating device Check the connectors from engine derating device to TCU Check the resistance* of engine derating device * See page 3-71
81	 Connector has no connection to TCU S.C. to battery voltage at clutch K4 The measured resistance value of the valve is out of limit, the voltage at K4 valve is too high Cable/connector is defective and has contact to battery voltage Cable/connector is defective and has contact to another regulator output of the TCU Regulator has an internal defect 	If failure at another clutch is pending TCU shifts to neutral OP mode : TCU shutdown	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
82	 S.C. to ground at clutch K4 The measured resistance value of the valve is out of limit, the voltage at K4 valve is too low Cable/connector is defective and has contact to vehicle ground Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the engine derating device Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
83	 O.C. at clutch K4 The measured resistance value of the valve is out of limit Cable/connector is defective and has contact to TCU Regulator has an internal defect 	OP mode : Limp home	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
84	 S.C. to battery voltage at clutch KV The measured resistance value of the valve is out of limit, the voltage at KV valve is too high Cable/connector is defective and has contact to battery voltage Cable/connector is defective and has contact to another regulator output of the TCU Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
85	 S.C. to ground at clutch KV The measured resistance value of the valve is out of limit, the voltage at KV valve is too low Cable/connector is defective and has contact to vehicle ground Regulator has an internal defect 	TCU shifts to neutral OP mode : Limp home If failure at another clutch is pending TCU shifts to neutral OP mode : TCU shutdown	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
86	 O.C. at clutch KV The measured resistance value of the valve is out of limit Cable/connector is defective and has contact to TCU Regulator has an internal defect 	If failure at another clutch	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
87	 S.C. to battery voltage at clutch KR The measured resistance value of the valve is out of limit, the voltage at KR valve is too high Cable/connector is defective and has contact to battery voltage Cable/connector is defective and has contact to another regulator output of the TCU Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
88	 S.C. to ground at clutch KR The measured resistance value of the valve is out of limit, the voltage at KR valve is too low Cable/connector is defective and has contact to vehicle ground Regulator has an internal defect 	If failure at another clutch is pending	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
89	 O.C. at clutch KR The measured resistance value of the valve is out of limit Cable/connector is defective and has no contact to TCU Regulator has an internal defect 	If failure at another clutch	 Check the cable from TCU to the gearbox Check the connectors from gearbox to TCU Check the regulator resistance* Check internal wire harness of the gearbox * See page 3-71
91	 S.C. to ground at relay reverse warning alarm TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is contact to vehicle ground Backup alarm device has an internal defect Connector pin is contacted to vehicle ground 	until TCU power down even if fault vanishes(Loose connection)	 Check the cable from TCU to the backup alarm device Check the connectors from backup alarm device to TCU Check the resistance* of backup alarm device * See page 3-71
92	 S.C. to battery voltage at relay reverse warning alarm TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and is contacted to battery voltage Backup alarm device has an internal defect Connector pin is contacted to battery voltage 	No reaction OP mode : Normal	 Check the cable from TCU to the backup alarm device Check the connectors from backup alarm device to TCU Check the resistance* of backup alarm device * See page 3-71

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
93	 O.C. at relay reverse warning alarm TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Backup alarm device has an internal defect Connector has no connection to TCU 	No reaction OP mode : Normal	 Check the cable from TCU to the backup alarm device Check the connectors from backup alarm device to TCU Check the resistance* of backup alarm device * See page 3-71
94	 S.C. to ground at relay starter interlock TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is connection to vehicle ground Starter interlock relay has an internal defect Connector pin is contacted to vehicle ground 	No reaction OP mode : Normal	 Check the cable from TCU to the stater interlock relay Check the connectors from starter interlock relay to TCU Check the resistance* of starter interlock relay * See page 3-71
95	 S.C. to battery voltage at relay starter interlock TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and has no connection to battery voltage Starter interlock relay has an internal defect Connector pin is contacted to battery voltage 	No reaction OP mode : Normal	 Check the cable from TCU to the starter interlock relay Check the connectors from starter interlock relay to TCU Check the resistance* of starter interlock relay * See page 3-71
96	 O.C. at relay starter interlock TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Starter interlock relay has an internal defect Connector has no connection to TCU 	No reaction OP mode : Normal	 Check the cable from TCU to the starter interlock relay Check the connectors from starter interlock relay to TCU Check the resistance* of starter interlock relay * See page 3-71
9A	 S.C. to ground at converter lock up clutch solenoid TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is contacted to vehicle ground Converter clutch solenoid has an internal defect Connector pin is contacted to vehicle ground 	OP mode : Normal	 Check the cable from TCU to the converter clutch solenoid Check the connectors from converter clutch solenoid to TCU Check the resistance* of converter clutch solenoid * See page 3-71

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
9B	 O.C. at converter lock up clutch solenoid TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Converter clutch solenoid has an internal defect Connector has no connection to TCU 	open, retarder not	 Check the cable from TCU to the converter clutch solenoid Check the connectors from converter clutch solenoid to TCU Check the resistance* of converter clutch solenoid * See page 3-71
9C	 S.C. to battery voltage at converter lock up clutch solenoid TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and has no contacted to battery voltage Converter clutch solenoid has an internal defect Connector pin is contacted to battery voltage 	No reaction OP mode : Normal	 Check the cable from TCU to the converter clutch solenoid Check the connectors from converter clutch solenoid to TCU Check the resistance* of converter clutch solenoid * See page 3-71
A1	 S.C. to ground at difflock or axle connection solenoid TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is contacted to vehicle ground Difflock solenoid has an internal defect Connector pin is contacted to vehicle ground 	OP mode : Normal	 Check the cable from TCU to the difflock solenoid Check the connectors from difflock solenoid to TCU Check the resistance* of difflock solenoid * See page 3-71
A2	 S.C. to battery voltage at difflock or axle connection solenoid TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and has no connection to battery voltage Difflock solenoid has an internal defect Connector pin is contacted to battery voltage 	No reaction OP mode : Normal	 Check the cable from TCU to the difflock solenoid Check the connectors from difflock solenoid to TCU Check the resistance* of difflock solenoid * See page 3-71
A3	 O.C. at difflock or axle connection solenoid TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Difflock solenoid has an internal defect Connector has no connection to TCU 	No reaction OP mode : Normal	 Check the cable from TCU to the difflock solenoid Check the connectors from difflock solenoid to TCU Check the resistance* of difflock solenoid * See page 3-71

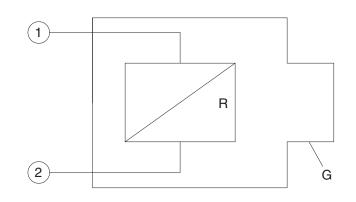
 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
A4	 S.C. to ground at warning signal output TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is contacted to vehicle ground Warning device has an internal defect Connector pin is contacted to vehicle ground 	No reaction OP mode : Normal	 Check the cable from TCU to the warning device Check the connectors from warning device to TCU Check the resistance* of warning device * See page 3-71
A5	 O.C. voltage at warning signal output TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Warning device has an internal defect Connector has no connection to TCU 	No reaction OP mode : Normal	 Check the cable from TCU to the warning device Check the connectors from warning device to TCU Check the resistance* of warning device * See page 3-71
A6	 S.C. to battery voltage at warning signal output TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and has is contacted to battery voltage Warning device has an internal defect Connector pin is contacted to battery voltage 	No reaction OP mode : Normal	 Check the cable from TCU to the warning device Check the connectors from warning device to TCU Check the resistance* of warning device * See page 3-71
B1	Slippage at clutch K1 TCU calculates a differential speed at closed clutch K1. If this calculated value is out of range, TCU interprets this as slipping clutch · Low pressure at clutch K1 · Low main pressure · Wrong signal at internal speed sensor · Wrong signal at output speed sensor · Wrong size of the sensor gap · Clutch is defective	If failure at another clutch	 Check pressure at clutch K1 Check main pressure in the system Check sensor gap at internal speed sensor Check sensor gap at output speed sensor Check signal at internal speed sensor Check signal at output speed sensor Check signal at output speed sensor Replace clutch
B2	Slippage at clutch K2 TCU calculates a differential speed at closed clutch K2. If this calculated value is out of range, TCU interprets this as slipping clutch · Low pressure at clutch K2 · Low main pressure · Wrong signal at internal speed sensor · Wrong signal at output speed sensor · Wrong size of the sensor gap · Clutch is defective	If failure at another clutch	 Check pressure at clutch K2 Check main pressure in the system Check sensor gap at internal speed sensor Check sensor gap at output speed sensor Check signal at internal speed sensor Check signal at output speed sensor Check signal at output speed sensor Replace clutch

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
B3	Slippage at clutch K3 TCU calculates a differential speed at closed clutch K3. If this calculated value is out of range, TCU interprets this as slipping clutch · Low pressure at clutch K3 · Low main pressure · Wrong signal at internal speed sensor · Wrong signal at output speed sensor · Wrong size of the sensor gap · Clutch is defective	If failure at another clutch	 Check pressure at clutch K3 Check main pressure in the system Check sensor gap at internal speed sensor Check sensor gap at output speed sensor Check signal at internal speed sensor Check signal at output speed sensor Check signal at output speed sensor Replace clutch
B4	Slippage at clutch K4 TCU calculates a differential speed at closed clutch K4. If this calculated value is out of range, TCU interprets this as slipping clutch • Low pressure at clutch K4 • Low main pressure • Wrong signal at internal speed sensor • Wrong signal at turbine speed sensor • Wrong size of the sensor gap • Clutch is defective	If failure at another clutch	 Check pressure at clutch K4 Check main pressure in the system Check sensor gap at internal speed sensor Check sensor gap at turbine speed sensor Check signal at internal speed sensor Check signal at turbine speed sensor Replace clutch
B5	Slippage at clutch KV TCU calculates a differential speed at closed clutch KV. If this calculated value is out of range, TCU interprets this as slipping clutch · Low pressure at clutch KV · Low main pressure · Wrong signal at internal speed sensor · Wrong signal at turbine speed sensor · Wrong size of the sensor gap · Clutch is defective		 Check pressure at clutch KV Check main pressure in the system Check sensor gap at internal speed sensor Check sensor gap at turbine speed sensor Check signal at internal speed sensor Check signal at turbine speed sensor Check signal at turbine speed sensor Replace clutch
B6	Slippage at clutch KR TCU calculates a differential speed at closed clutch KR. If this calculated value is out of range, TCU interprets this as slipping clutch · Low pressure at clutch KR · Low main pressure · Wrong signal at internal speed sensor · Wrong signal at turbine speed sensor · Wrong size of the sensor gap · Clutch is defective	If failure at another clutch	 Check pressure at clutch KR Check main pressure in the system Check sensor gap at internal speed sensor Check sensor gap at turbine speed sensor Check signal at internal speed sensor Check signal at turbine speed sensor Check signal at turbine speed sensor Replace clutch
B7	Overtemp sump TCU measured a temperature in the oil sump that is over the allowed threshold.	No reaction OP mode : Normal	 Cool down machine Check oil level Check temperature sensor
B9	Overspend engine	Retarder applies OP mode : Normal	-
BA	 Differential pressure oil filter TCU measured a voltage at differential pressure switch out of the allowed range Oil filter is polluted Cable/connector is broken or cable/ connector is contacted to battery voltage or vehicle ground Differential pressure switch is defective 	No reaction OP mode : Normal	 Check oil filter Check wiring from TCU to differential pressure switch Check differential pressure switch(Measure resistance)

 $\ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

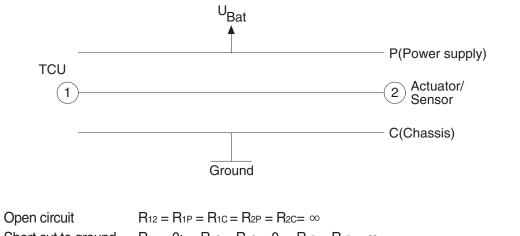
Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
BB	Slippage at converter lockup clutch TCU calculates a differential speed at closed converter lockup clutch. If this calculated value is out of range, TCU interprets this as slipping clutch · Low pressure at converter lockup clutch · Low main pressure · Wrong signal at engine speed sensor · Wrong signal at turbine speed sensor · Wrong size of the sensor gap · Clutch is defective	No reaction OP mode : Normal	 Check pressure at converter lockup clutch Check main pressure in the system Check sensor gap at engine speed sensor Check sensor gap at turbine speed sensor Check signal at engine speed sensor Check signal at turbine speed sensor Check signal at turbine speed sensor Replace clutch
C0	Engine torque or engine power overload TCU calculates an engine torque or engine power above the defined thresholds	OP mode : Normal	
C1	Transmission output torque overload TCU calculates an transmission output torque above the defined threshold	OP mode : Normal	
C2	Transmission input torque overload TCU calculates an transmission input torque above the defined threshold	programmable : No reaction or shift to neutral OP mode : Normal	
C3	Overtemp converter output TCU measured a oil temperature at the converter output that is the allowed threshold	No reaction OP mode : Normal	 Cool down machine Check oil level Check temperature sensor
C4	 S.C. to ground at joystick status indicator TCU detected a wrong voltage at the output pin, that looks like a S.C. to vehicle ground Cable is defective and is contacted to vehicle ground Joystick status indicator has an internal defect Connector pin is contacted to vehicle ground 	No reaction OP mode : Normal	 Check the cable from TCU to joystick status indicator Check the connectors from joystick status indicator to TCU Check the resistance* of joystick status indicator * See page 3-71
C5	 S.C. to battery voltage at joystick status indicator TCU detected a wrong voltage at the output pin, that looks like a S.C. to battery voltage Cable is defective and is contacted to battery voltage Joystick status indicator has an internal defect Connector pin is contacted to battery voltage 	No reaction OP mode : Normal	 Check the cable from TCU to joystick status indicator Check the connectors from joystick status indicator to TCU Check the resistance* of joystick status indicator * See page 3-71


Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
C6	 O.C. at joystick status indicator TCU detected a wrong voltage at the output pin, that looks like a O.C. for this output pin Cable is defective and has no connection to TCU Joystick status indicator has an internal defect Connector pin has no connection to TCU 	No reaction OP mode : Normal	 Check the cable from TCU to joystick status indicator Check the connectors from joystick status indicator to TCU Check the resistance* of joystick status indicator * See page 3-71
D1	S.C. to battery voltage at power supply for sensors TCU measures more than 6V at the pin AU1 (5V sensor supply)	See fault codes No.21 to 2C	 Check cables and connectors to sensors, which are supplied from AU1 Check the power supply at the pin AU1(Should be appx. 5V) Fault codes No.21 to No.2C may be reaction of this fault
D2	S.C. to ground at power supply for sensors TCU measures less than 4V at the pin AU1 (5V sensor supply)	See fault codes No.21 to 2C	 Check cables and connectors to sensors, which are supplied from AU1 Check the power supply at the pin AU1(Should be appx. 5V) Fault codes No.21 to No.2C may be reaction of this fault
D3	Low voltage at battery Measured voltage at power supply is lower than 18V(24V device)	Shift to neutral OP mode : TCU shutdown	 Check power supply battery Check cables from batteries to TCU Check connectors from batteries to TCU
D4	High voltage at battery Measured voltage at power supply is higher than 32.5V(24V device)	Shift to neutral OP mode : TCU shutdown	 Check power supply battery Check cables from batteries to TCU Check connectors from batteries to TCU
D5	 Error at valve power supply VPS1 TCU switched on VPS1 and measured VPS1 is off or TCU switched off VPS1 and measured VPS1 is still on Cable or connectors are defect and are contacted to battery voltage Cable or connectors are defect and are contacted to vehicle ground Permanent power supply KL30 missing TCU has an internal defect 	Shift to neutral OP mode : TCU shutdown	 Check fuse Check cables from gearbox to TCU Check connectors from gearbox to TCU Replace TCU
D6	Error at valve power supply VPS2 TCU switched on VPS2 and measured VPS2 is off or TCU switched off VPS2 and measured VPS2 is still on • Cable or connectors are defect and are contacted to battery voltage • Cable or connectors are defect and are contacted to vehicle ground • Permanent power supply KL30 missing • TCU has an internal defect	Shift to neutral OP mode : TCU shutdown	 Check fuse Check cables from gearbox to TCU Check connectors from gearbox to TCU TCU Replace TCU

Fault code (Hex)	Meaning of the fault code possible reason for fault detection	Reaction of the TCU	Possible steps to repair
E3	 S.C. to battery voltage at display output TCU sends data to the display and measures always a high voltage level on the connector Cable or connectors are defective and are contacted to battery voltage Display has an internal defect 	No reaction OP mode : Normal	 Check the cable from TCU to the display Check the connectors at the display Change display
E4	 S.C. to ground at display output TCU sends data to the display and measures always a high voltage level on the connector Cable or connectors are defective and are contacted to battery voltage Display has an internal defect 	No reaction OP mode : Normal	 Check the cable from TCU to the display Check the connectors at the display Change display
E5	Communication failure on DeviceNet	Shift to neutral OP mode : TCU shutdown	 Check Omron master Check wire of DeviceNet-Bus Check cable to Omron master
F1	General EEPROM fault TCU can't read non volatile memory • TCU is defective	No reaction OP mode : Normal	 Replace TCU Often shown together with fault code F2
F2	Configuration lost TCU has lost the correct configuration and can't control the transmission • Interference during saving data on non volatile memory • TCU is brand new or from another vehicle	Transmission stay neutral OP mode : TCU shutdown	 Reprogram the correct configurat- ion for the vehicle (e.g. with cluster controller,)
F3	Application error Something of this application is wrong	Transmission stay neutral OP mode : TCU shutdown	 Replace TCU This fault occurs only if an test engineer did something wrong in the application of the vehicle
F5	Clutch failure AEB was not able to adjust clutch filling parameters · One of the AEB-Values is out of limit	Transmission stay neutral OP mode : TCU shutdown	 Check clutch TCU shows also the affected clutch on the display
F6	Clutch adjustment data lost TCU was not able to read correct clutch adjustment parameters • Interference during saving data on non volatile memory • TCU is brand new	Offsets used	 Execute AEB and brake sensor calibration
F7	Substitute clutch control • Transmission input torque wrong • Engine retarder torque wrong • Speed signal (s) defective	OP mode : Substitute clutch control	 Check engine retarder torque Check speed sensors

* Some fault codes are not applied to this machine.

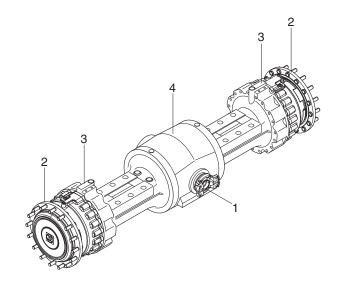
5) MEASURING OF RESISTANCE AT ACTUATOR/SENSOR AND CABLE


(1) Actuator

76043PT19

76043PT20

(2) Cable

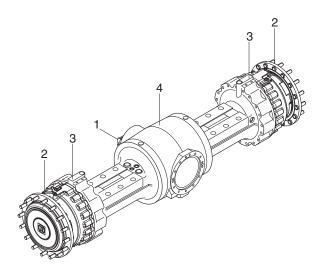

Short cut to ground $R_{12} = 0$; $R_{1C} = R_{2C} = 0$, $R_{1P} = R_{2P} = \infty$ Short cut to battery $R_{12} = 0$; $R_{1C} = R_{2C} = 0$, $R_{1P} = R_{2P} = 0$

5. AXLE

1) OPERATION

- The power from the engine passes through torque converter, transmission and drive shafts, and is then sent to the front and rear axles.
- Inside the axles, the power passes from the bevel pinion to the bevel gear and is sent at right angles. At the same time, the speed is reduced and passes through the both differentials to the axle shafts. The power of the axle shafts is further reduced by planetary-gear-type final drives and is sent to the wheels.

(1) Front axle


1 Input

2 Output

3 Brake

4 Axle housing

7609A3PT16

7609A3PT15

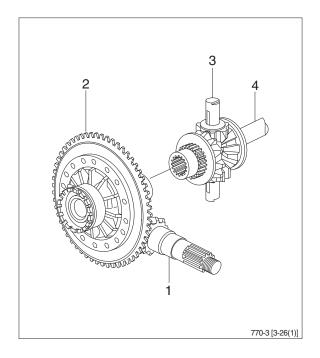
- 1 Input
- 4 Axle housing

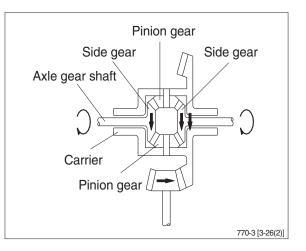
Brake

3

2) DIFFERENTIAL

(1) Description

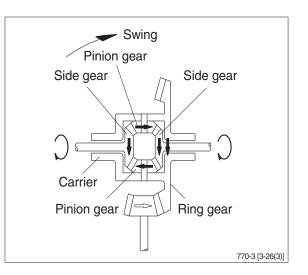

When the machine makes a turn, the outside wheel must rotate faster than the inside wheel. A differential is a device which continuously transmits power to the right and left wheels while allowing them to turn a different speeds, during a turn.

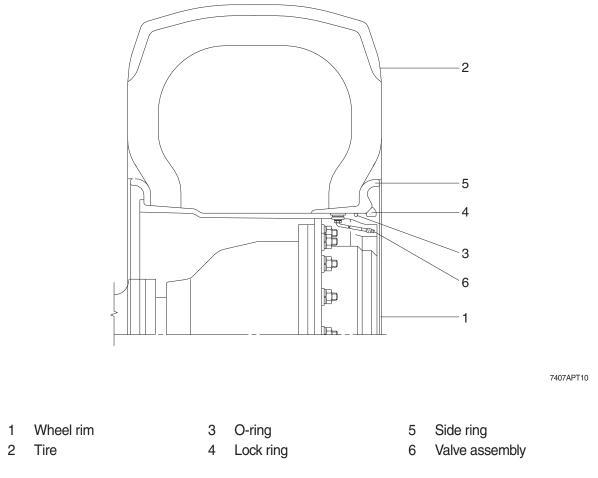

The power from the drive shaft passes through bevel pinion (1) and is transmitted to the bevel gear (2). The bevel gear changes the direction of the motive force by 90 degree, and at the same time reduces the speed.

It then transmits the motive force through the differential (3) to the axle gear shaft (4).

(2) When driving straight forward

When the machine is being driven straight forward and the right and left wheels are rotating at the same speed, so the pinion gear inside the differential assembly do not rotate. The motive force of the carrier is send through the pinion gear and the side gear, therefore the power is equally transmitted to the left and right axle gear shaft.




(3) When turning

When turning, the rotating speed of the left and right wheels is different, so the pinion gear and side gear inside the differential assembly rotate in accordance with the difference between the rotating speed of the left and right wheels.

The power of the carrier is then transmitted to the axle gear shafts.

6. TIRE AND WHEEL

- 1) The tire acts to absorb the shock from the ground surface to the machine, and at the same time they must rotate in contact with the ground to gain the power which drives the machine.
- 2) Various types of tires are available to suit the purpose. Therefore it is very important to select the correct tires for the type of work and bucket capacity.

GROUP 2 OPERATIONAL CHECKS AND TROUBLESHOOTING

1. POWER TRAIN OPERATIONAL CHECKS

This procedure is designed so that the mechanic can make a quick check of the system using a minimum amount of diagnostic equipment. If you need additional information, read Structure and function, Group 1.

A location will be required which is level and has adequate space to complete the checks.

The engine and all other major components must be at operating temperature for some checks.

Locate system check in the left column and read completely, following the sequence from left to right. Read each check completely before performing.

At the end of each check, if no problem is found(OK), that check is complete or an additional check is needed. If problem is indicated(NOT OK), you will be given repair required and group location. If verification is needed, you will be given next best source of information :

Chapter 2 : Troubleshooting Group 3 : Tests and adjustments * Transmission oil must be at operating temperature for these checks.

Item	Description		Service action
Transmission oil warm-up procedure		Start engine. Apply service brakes and release parking brake.	OK Check completed.
		Select T/M shift mode to MANUAL mode.	
		Move gear selector lever to 3rd speed.	
	MANUAL mode	Move gear selector lever to forward "F" position.	
		Increase engine speed to high idle for 30 seconds.	
		Move gear selector lever to neutral "N" position and run for 15 seconds.	
		Repeat procedure until transmission temperature gauge arrow points to bar above dial.	
Gear selector lever and neutral lock latch checks		Move gear selector lever to each position.	OK Check completed.
Engine OFF.		NOTE : Gear selector lever position changes slightly as steering column is tilted.	NOT OK Repair lock or replace switch.
	0	FEEL : Lever must move freely through all positions.	
		Engage neutral lock.	
		Apply slight effort to move lever into forward (F) and reverse (R).	
		LOOK : Neutral lock must stay engaged.	
Automatic shifting check		Start engine.	OK
		Move gear selector lever to 4th speed.	Check completed.
	AL mode	Select T/M shift mode to AL (auto light) mode.	Go to transmission fault code group at page 3-54~
		LOOK : Automatic sign on cluster.	3-70. Repair or replace the
	Automatic mode	Move gear selector lever to forward or reverse position.	monitor or harness.
		Increase engine rpm.	
		LOOK : Speed on cluster must vary with machine speed.	

Item		Description	Service action
Transmission noise check Engine running.		Run engine at approximately 1600 rpm. Drive unit with transmission in each	Check completed. NOT OK
		forward and reverse speed. LISTEN : Transmission must not make excessive noise in any range.	Go to transmission makes excessive noise, chapter 2 in this group.
		Engine rpm must not "lug down" as unit is shifted between gears.	
Transmission "quick shift" check	Release	Release parking brake and select T/M shift mode to MANUAL mode.	OK Check completed.
Engine running.		Shift to 2nd forward.	NOT OK
	MANUAL mode	Drive machine at approximately 5km/h and press gear selector lever kick down switch or RCV levers switch once.	Go to transmission
		LOOK/FEEL : Transmission must shift to and remain in 1st gear.	controller circuit in group 1.
		Press gear selector lever kick down switch once.	
		LOOK/FEEL : Transmission must shift back to 2nd gear.	
		Shift to (3rd or 4th) gear and press gear selector lever kick down switch once.	
		LOOK/FEEL : Transmission must not shift down.	
		Select T/M shift mode to AL (auto light) mode.	
		Drive machine at approximately 90% speed of max speed in each gear (2nd or 3rd or 4th).	
		Shift to (2nd or 3rd or 4th) gear in each forward and reverse speed and press gear selector kick down lever switch or RCV lever switch once.	
		LOOK/FEEL : If shift down quickly from current gear to one step lower speed and recover to original speed quickly when push the switch one more time. (mode 1)	
		If shifts down from current gear to one step lower speed when push the switch everytime and recover when push the switch in 1st gear. (mode 2)	

Item	Description		Service action
Forward, reverse and 4th		Park unit on level surface.	OK
speed clutch pack drag check		Apply service brakes.	Check completed.
* Transmission must		Move gear selector lever to neutral.	NOT OK If unit moves, repair
be warmed up for this check.	Release	Move gear selector lever to 1st.	transmission.
Engine running.		Release parking brake and service brakes.	
		Run engine at low idle.	
		LOOK : Unit must not move in either direction.	
		NOTE : If unit moves forward, either the forward pack or the 4th speed pack is dragging.	
Transmission shift modulation check		Run engine at approximately 1300 rpm.	OK Check completed.
Engine running.		Put transmission in 1st forward, shift several times from forward to reverse and reverse to forward. Repeat check in 2nd gear.	Go to unit shifts too fast
		LOOK : Unit must slow down and change direction smoothly.	
Torque converter check		Start engine. Apply service brakes and release parking brake.	OK Check completed.
		Move gear selector lever to 3rd speed.	If stall rpm are too low or
		Move gear selector control lever to forward "F" position.	too high, problem may be engine power or torque converter.
		Increase engine speed to high idle.	IF OK
		$\begin{array}{l} \textbf{LOOK}: \text{Torque converter stall rpm} \\ \text{must be within the following range.} \\ \text{Stall rpm}: \ 1910 \pm 70 \text{ rpm} \end{array}$	
		Move gear selector control lever to neutral "N" position and run for 15 seconds.	

2. TROUBLESHOOTING

1) TRANSMISSION

* Diagnose malfunction charts are arranged from most probable and simplest to verify, to least likely, more difficult to verify. Remember the following steps when troubleshooting a problem :

Step 1. Operational check out procedure (See group 3 in section 1.)

Step 2. Operational checks (In this group.)

Step 3. Troubleshooting

Step 4. Tests and/or adjustments (See group 3.)

Problem	Cause	Remedy
Transmission slippage	Low oil level.	Add oil.
	Wrong oil grade.	Change oil.
	Restricted transmission pump suction screen.	Remove and clean screen.
	Leak in transmission control valve or gasket.	Remove valve and inspect gaskets.
	Low transmission pump flow due to worn pump.	Do transmission pump flow test.
	Weak or broken pressure regulat- ing valve spring.	Do transmission system pressure test.
Error code on display	Something wrong in transmission.	Go to transmission fault code group at page 3-54~3-70.

Problem	Cause	Remedy
Machine will not move	Low oil level.	Add oil.
	Applied park brake.	Check parking brake fuse. Check continuity to parking brake switch.
	No power to transmission contro- ller.	Check transmission controller fuse.
	Malfunctioning parking brake solenoid valve.	Remove and inspect parking brake solenoid valve. Check for power to solenoid valve.
	Restricted orifice of PPC valve.	Remove orifice and check for contamination and/or plugging. (Do not remove valve housing for this purpose.)
	Excessive leakage in transmission element.	Do transmission element leakage test using system pressure.
	Worn clutch disks.	Repair transmission.
	Low or no transmission pressure.	See transmission pressure is low in this group.
	Service brake will not release.	Do brake pedal operational check. Do service and park system drag checks.
	Failed torque converter.	Do torque converter stall test. If engine pulldown in normal, torque converter is good.
	Broken shafts or gears.	Drain transmission to determine if large pieces of metal contamination are present.
	Broken drive shafts.	Inspect drive shafts and universal joints for external damage. Repair.
	Broken ring or pinion gear.	If drive shaft rotate with transmission in gear but machine does not move, a differential failure is indicated. Repair.
Machine does not engage in low gear	Malfunctioning transmission control solenoid valve.	Check solenoid valve.
	Stuck spool in transmission control valve.	Remove and inspect transmission control valve spools.
	Stuck PPC valve.	Remove end cover to inspect PPC valve. Replace if necessary.
	Malfunctioning transmission speed sensor.	Check speed sensor.

Problem	Cause	Remedy
Transmission pressure is low (all gears)	Low oil level.	Check transmission oil level and refill if necessary.
	Failed transmission pressure switch.	Verify transmission system pressure. Do transmission system pressure test.
	Plugged suction strainer.	Transmission pump may be noisy if transmission suction screen is clogged. Drain transmission. Remove and clean suction screen. Also, check condition of transmission filter.
	Stuck transmission pressure regulating valve or broken spring.	Remove transmission pressure regulating valve. Inspect for damage (See transmission control valve).
	Failed control valve gasket.	Inspect transmission control valve for external leakage. Remove control valve. Inspect or replace gasket.
	Stuck PPC valve.	Remove end cover to inspect modulation spool and check torque on cap screws retaining control valve to transmission.
Transmission system	Failed transmission pump.	Do pump flow test.
pressure is low (one or two gears)	Failed transmission control valve gasket.	Inspect transmission control valve for external leakage. Remove control valve. Inspect or replace gasket.
	Leakage in clutch piston or seal ring.	Disassemble and repair.
Transmission shifts too	Low oil level (aeration of oil).	Add oil.
low	Low transmission pressure.	Do transmission system pressure test.
	Restricted transmission pump suction screen.	Remove and clean screen.
	Low transmission pump flow.	Do transmission pump flow test.
	Excessive transmission element leakage.	Do transmission element leakage test using system pressure.
	Stuck PPC valve.	Remove end cover to inspect modulation spool. Replace if necessary.
	Restricted PPC valve orifice.	Remove orifice and inspect for contamination and /or plugging.
	Restricted oil passages between control valve and transmission elements.	Remove control valve and inspect oil passage.
	Incorrect transmission oil.	Change oil (SAE 10W-30/15W-40)

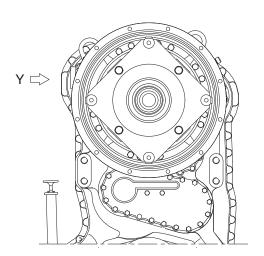
Problem	Cause	Remedy
Transmission shifts too fast	Wrong transmission controller.	Check if transmission controller has been changed
	System pressure too high.	Do transmission system pressure test.
	Stuck PPC valve.	Remove and inspect PPC valve. Replace if necessary. Also remove end cover to inspect PPC valve and control valve housing. Replace if necessary.
	Stuck or missing check valves.	Inspect transmission control valve.
	Missing O-ring from end of modulation orifice.	Remove orifice and inspect port for O-ring.
	Broken piston return spring.	Disassemble and inspect clutch.
	Incorrect transmission oil.	Change oil (SAE 10W-30/15W-40).
Machine "creeps" in neutral	Warped disks and plates in transmission.	Check transmission.
Transmission hydraulic system overheats	High oil level.	Transmission overfilled or hydraulic pump seal leaking.
	Low oil level.	Add oil.
	Wrong oil grade.	Change oil.
	Park brake dragging.	Check for heat in park brake area.
	Pinched, restricted or leaking lube lines.	Check cooler lines.
	Machine operated in too high gear range.	Operate machine in correct gear range.
	Malfunction in temperature gauge or sensor.	Install temperature sensor the verify temperature. Do tachometer/temperature reader installation procedure.
	Restricted air flow through oil cooler or radiator.	Do radiator air flow test.
	Failed oil cooler bypass valve (In thermal bypass valve).	Disassemble and inspect.
	Failed thermal bypass valve.	Remove thermal bypass valve and check to see if machine still overheats. Do transmission oil cooler thermal bypass valve test.
	Internally restricted oil cooler.	Do oil cooler restriction test.
	Leakage in transmission hydraulic system.	Do transmission system pressure, element leakage test.
	Malfunction in converter relief valve.	Do converter out pressure test.
	Low transmission pump output.	Do transmission pump flow test.

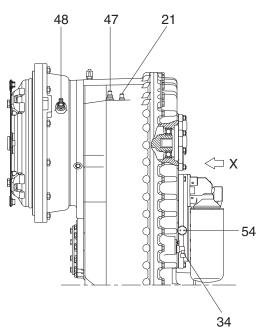
Problem	Cause	Remedy
Excessive transmission	Too low engine low idle.	Check engine low idle speed.
noise (Under load or no load)	Worn parts or damaged in transmission.	Remove transmission suction screen. Inspect for metal particles. Repair as necessary.
	Warped drive line between engine and torque converter.	Inspect drive line.
	Low or no lube.	Do converter-out and lube pressure test. Do transmission pump flow test.
Foaming oil	Incorrect type of oil.	Change oil.
	High oil level.	Transmission overfilled or hydraulic pump seal leaking.
	Low oil level.	Add oil.
	Air leak on suction side of pump.	Check oil pickup tube on side of transmission.
Oil ejected from dipstick	Plugged breather.	Inspect breather on top of transmission. Replace.
Machine vibrates	Aerated oil.	Add oil.
	Low engine speed.	Check engine speed.
	Failed universal joints on transmission drive shaft or differential drive shafts.	Check universal joints.
Machine lacks power and acceleration	Engine high idle speed set too low.	Check high idle adjustment.
	Incorrect transmission oil.	Change oil.
	Aerated oil.	Add oil.
	Low transmission pressure.	Do transmission system pressure test.
	Warped transmission clutch.	Do transmission clutch drag checks.
	Torn transmission control valve gasket.	Inspect gasket.
	Brake drag.	Do brake drag check.
	Failed torque converter.	Do torque converter stall speed test.
	Low engine power.	Do engine power test.
Torque converter stall RPM too high	Aerated oil.	Put clear hose on thermal bypass outlet port. Run machine to check for bubbles in oil.
	Stuck open converter relief valve.	Do converter-out pressure test.
	Leakage in torque converter seal.	Do converter-out pressure test.
	Torque converter not transferring power (Bent fins, broken starter).	Replace torque converter.

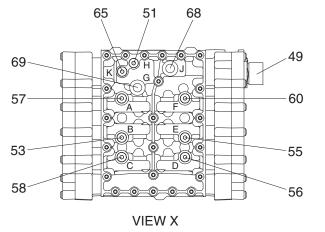
Problem	Cause	Remedy
Torque converter stall	Low engine power.	Do engine power test.
RPM too low	Mechanical malfunction.	Remove and inspect torque converter.
Transmission pressure		Add oil.
light comes ON when shifting from forward to	Cold oil.	Warm oil to specification.
reverse (all other gears OK)	Leak in reverse pack.	Do transmission pressure, pump flow, and leakage check.
Transmission pressure	Cold oil.	Warm oil to specification.
light comes ON for each shift	No time delay in monitor.	Do monitor check.
	Restriction in modulation orifice.	Remove orifice and inspect for restriction and/or plugging.
	Stuck PPC valve.	Remove and inspect.
	Low transmission pressure circuit.	Do transmission system pressure test.
	Leak in transmission pressure circuit.	Do converter out pressure test.
	Failed transmission pump.	Do transmission pump flow test.
	Clogged filter.	Inspect filter. Replace.

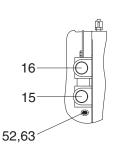
2) DIFFERENTIAL / AXLE

Problem	Cause	Remedy
Differential low on oil	External leakage.	Inspect axle and differential for leaks.
Excessive differential and/or axle noise	Low oil level in differential.	Check oil. Remove drain plug and inspect for metal particles in differential case. Disassemble and determine cause.
	Incorrect type of oil.	Change oil
	Dragging brakes.	Do brake check.
	Failed pinion bearing.	Remove and inspect pinion. Check to ensure pinion housing was indexed.
	Incorrect gear mesh pattern between ring and pinion gear.	Remove pinion gear housing and inspect ring and pinion gear.
	Failed differential pinion gears and/or cross shafts.	Remove differential housing drain plug and inspect for metal particles. Disassemble and inspect.
	Failed axle bearing.	Do axle bearing adjustment check.
	Mechanical failure in axle planetary.	Remove differential. Inspect, repair.
Oil seeping from outer	Excessive end play in axle.	Do axle bearing adjustment check.
axle seal	Worn outer bearing and/or cup.	Disassemble and inspect outer axle bearing, cup, spacer, and seal. Replace, if necessary.
	Overfilled differential.	Check differential oil return system for excessive internal restriction.
Axle overheats	Low differential oil.	Add oil.
	Overfilled differential.	See differential overfills with oil in this group.
	Brake drag.	See brakes drag in this group.


3) DRIVE LINE


Problem	Cause	Remedy
	Yokes not in line on drive shafts.	Inspect. Align drive shaft yokes.
vibration or noise	Worn front drive line support bearing.	Inspect, repair.
	Bent drive shaft.	Inspect all drive shafts. Replace.
	Loose yoke retaining nuts (drive shafts wobble at high speed).	Inspect. Replace.
	Rear axle oscillating support.	Inspect, repair.
	Lack of lubrication.	Lubricate with proper grade of grease.


GROUP 3 TESTS AND ADJUSTMENTS


1. TRANSMISSION MEASURING POINTS AND CONNECTIONS

The measurements have to be carried out at hot transmission (about 80~95°C).

1) OIL PRESSURE AND TEMPERATURE

Port	Description		Size
51	Converter inlet-opening pressure (11 bar)	Н	M10×1
52	Converter outlet-opening pressure (4.3 bar)		M14×1.5
53	Forward clutch (16+2 bar)	В	M10×1
55	Reverse clutch (16+2 bar)	Е	M10×1
56	1st clutch (16+2 bar)	D	M10×1
57	2nd clutch (16+2 bar)	А	M10×1
58	3rd clutch (16+2 bar)	С	M10×1
60	4th clutch (16+2 bar)	F	M10×1
63	Converter outlet temperature 100°C, short-time 120°C		M14×1.5
65	System pressure (16+2 bar)	K	M10×1

2) DELIVERY RATES

Port	Description	Size
15	Connection to the oil cooler	1 5/16″-12UNF-2B
16	Connection from the oil cooler	1 5/16″ -12UNF-2B

3) INDUCTIVE TRANSMITTER AND SPEED SENSOR

Port	De	scription	Size
21	Inductive transmitter	n turbine	M18×1.5
34	Speed sensor	n output and speedometer	-
47	Inductive transmitter	n central gear train	M18×1.5
48	Inductive transmitter	n engine	M18×1.5
54	Filter contamination switch		M14×1.5

4) CONNECTIONS

Port	Description	Size
49	Plug connection on the hydraulic control unit	-
68	Pilot pressure (option) J	M16×1.5
69	System pressure (option) G	M16×1.5

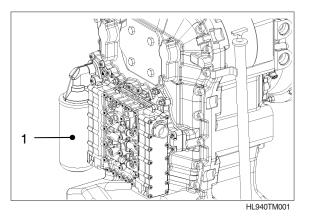
GROUP 4 DISASSEMBLY AND ASSEMBLY

1. TRANSMISSION

1) DISASSEMBLY

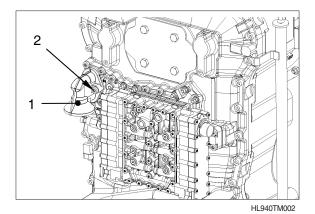
Electro-hydraulic control and fine filter (replaceable filter)

* Attach transmission to assembly truck.


Assembly truck	5870 350 000
Holding fixtures	5870 350 063
Clamping angles	5870 350 090

- * Drain oil prior to starting disassembly.
- * Disposal of oil according to legal requirements.

(1) Removal of filter

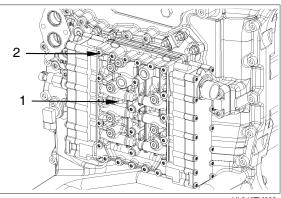

① Separate fine filter (1) from filter head by means of belt wrench.

5870 105 005

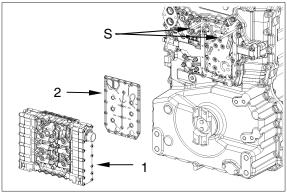
- ② Loosen Torx screws (2) and separate filter head (1) from transmission housing.
- * Remove O-rings.

Socket wrench TX 40 5873 042 004

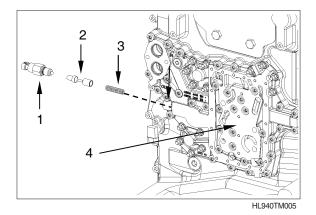
(2) Removal of electric gear-shift control


1 Remove gear-shift control (1).

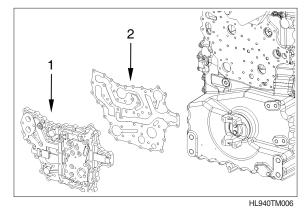
Loosen Torx screws (2) and separate gear-shift control housing from intermediate plate.


Socket wrench TX-27	5873 042 002
Adjusting screws M6	5870 204 063

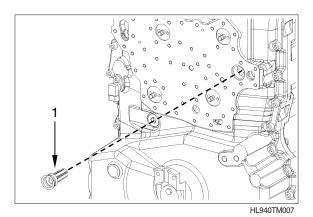
② Remove gear-shift control assy (1) and sealing plate (2).

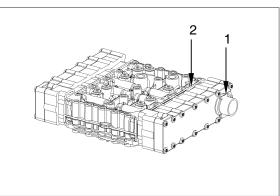


HL940TM003

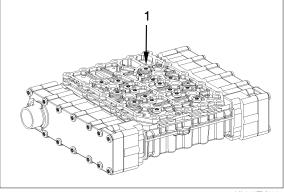


HL940TM004

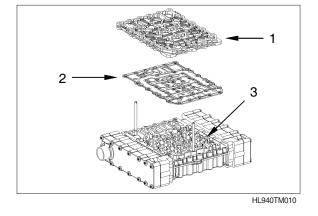

- ③ Remove differential pressure switch for fine filter from duct plate (4).
 - 1 Switch with O-ring
 - 2 Piston
 - 3 Compression spring

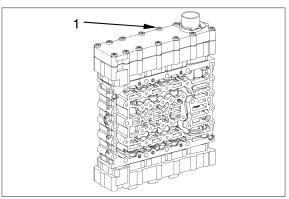

 ④ Loosen hexagon nuts and Torx screws and separate duct plate (1) and seal (2) from housing rear part.

5 Pull converter safety valve (1) out of housing hole.


6 Mark installation position of wiring harness (1) towards valve block (2).

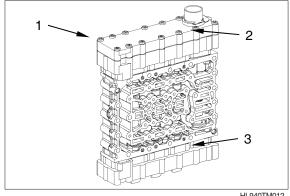
HL940TM008


⑦ Loosen Torx screws (1). Socket wrench TX-27



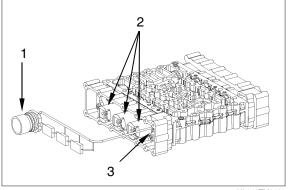
HL940TM009

(8) Separate duct plate (1) and sealing plate (2) from valve block (3).

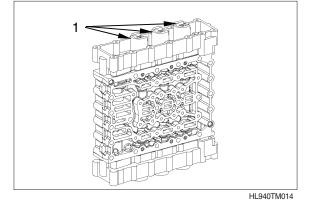

9 Remove retaining clamp (1).

HL940TM011

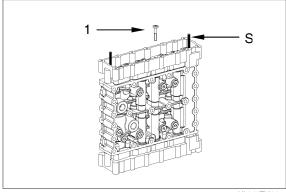
10 Loosen Torx screws (1) and remove cover (2). Remove opposite cover (3) in the same way.


Socket wrenchTX-27 5873 042 002

HL940TM012

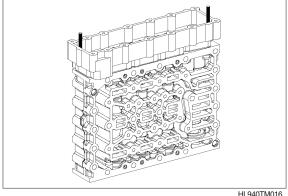

1 Remove wiring harness (1).

Loosen cylindrical screws (3), remove fixing plates and remove pressure controllers (2).

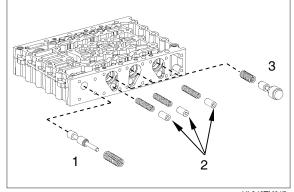

HL940TM013

12 Loosen cylindrical screws, remove fixing plates and remove pressure controllers (1) on opposite side.

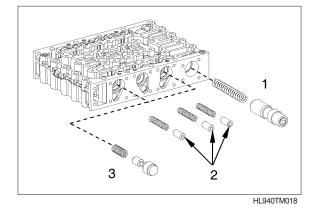
13 Loosen two Torx screws (1) and preliminarily fix housing by means adjusting screws (S, housing is springloaded). Then loosen remaining Torx screws.


Adjusting screws 5870 204 036

HL940TM015


(1) Separate housing from valve housing by loosening the adjusting screws equally.

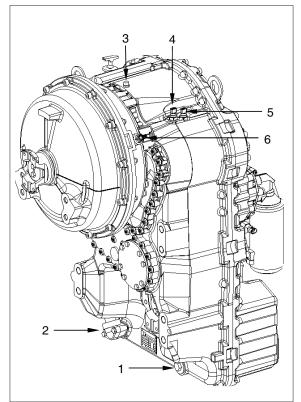
5870 204 036 Adjusting screws


HL940TM016

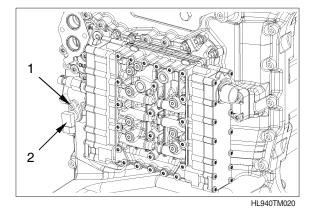
- (15) Remove individual parts :
 - Pressure reducing valve 1
 - 2 Vibration dampers
 - 3 Follow-on slide

HL940TM017

- (6) Remove individual parts of opposite side analogously :
 - 1 Main pressure valve
 - 2 Vibration dampers
 - 3 Follow-on slide


2) DISASSEMBLY

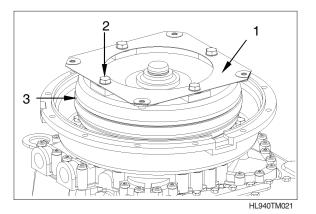
Inductive sensor, hall sensor, breather, oil filler and oil drain plug


(1) Attach transmission to assembly truck.

Assembly truck	5870 350 000
Holding fixtures	5870 350 063
Clamping angles	5870 350 090

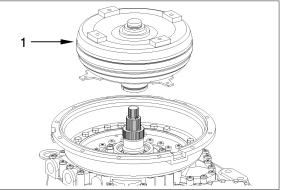
- (2) Remove positioned parts.
 - 1 Screw plug (oil drain hole)
 - 2 Oil filler tube with oil dipstick
 - 3 Breather
 - 4 Inductive sensor n central gear chain
 - 5 Inductive sensor n turbine
 - 6 Inductive sensor n engine
- (3) Loosen cylindrical screw (1) and remove speed sensor (hall sensor).
- * Remove O-ring.
 - 2 Speed sensor n output

HL940TM019



3) DISASSEMBLY

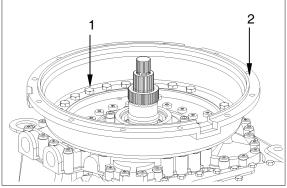
Engine connection, oil pressure pump, converter back-pressure valve and temperature sensor (measuring point "63" after the converter).


(1) Engine connection (direct mount)

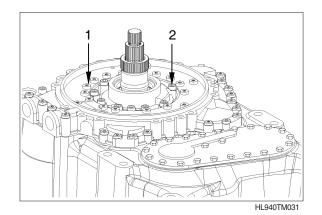
① Loosen hexagon screw (2) and separate flexplate (1) from converter (3).

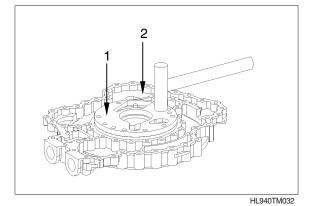
② Separate converter (1) from transmission by means of lifting device.

Eye bolts assortment 5870 204 002

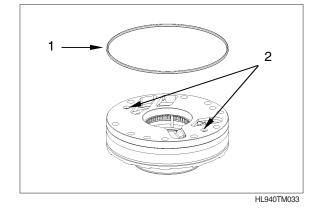


HL940TM022

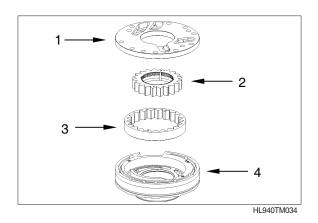

(2) Oil pressure pump

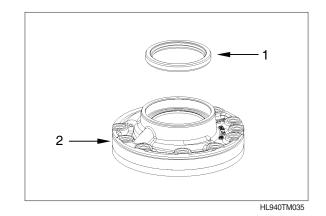

 Loosen bolted connection (1) converter bellhousing/oil feed housing and remove converter bellhousing (2).

- 2 Loosen bolted connection (1) oil feed housing/transmission housing front part with Torx screws and bolted connection (2) oil pressure pump/transmission housing front part with cylindrical screws.
- Separate oil feed housing together with oil pressure pump from transmission housing front part.
- ③ Separate oil pressure pump (1) from oil feed housing (2).



④ Remove O-ring (1).

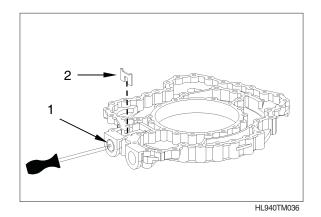

* Loosen cylindrical screws (2).



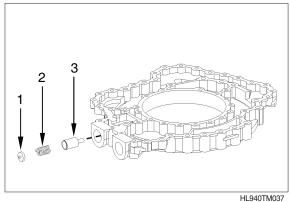
5 Check oil gear pump :

In case of wear marks in the pump housing, cover or on the inner and outer rotor, the complete oil pressure pump is to be replaced.

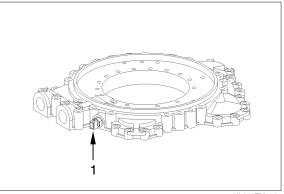
- 1 Cover
- 2 Inner rotor
- 3 Outer rotor
- 4 Pump housing
- 6 Remove shaft seal (1) from the pump housing (2).



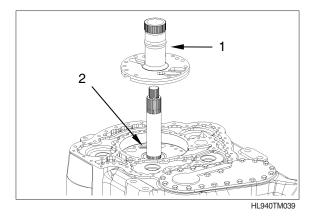
3-96


(3) Converter back-pressure valve

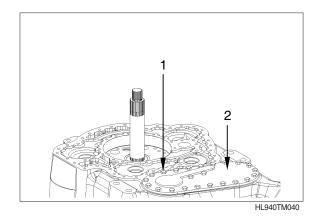
① Preload converter safety valve (1) by means of screw driver or assembly aid (S) and remove locking plate (2).


Assembly aid 5870 345 107

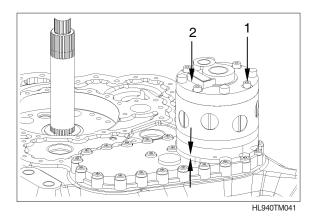
- ② Remove individual parts of converter safety valve which are getting released.
 - 1 Pressure plate
 - 2 Compression spring
 - 3 Piston

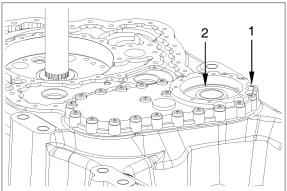


③ Remove temperature sensor (1).

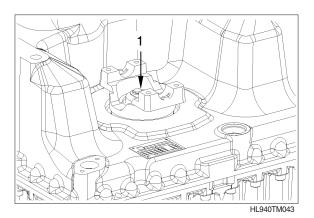

HL940TM038

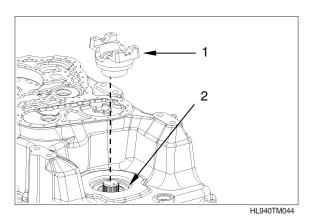
- ④ Remove stator shaft (1). Pull pressure relief valve (2) out of the housing hole.
- * The pressure relief valve is not mounted on all versions.


4) DISASSEMBLY-EMERGENCY STEERING PUMP

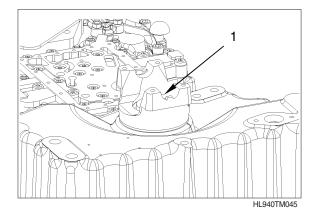

- (1) Version without emergency steering pump
- ① Loosen bolted connection (1) cover/ housing front part and remove cover (2) and seal.

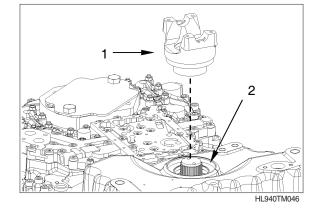
(2) Version with emergency steering pump


- Loosen cylindrical screws (1) and separate emergency steering pump (2) from cover.
- Mark radial installation position (see arrows).
- ② Loosen bolted connection (1) cover/ housing front part and remove cover (2) and seal.



HL940TM042

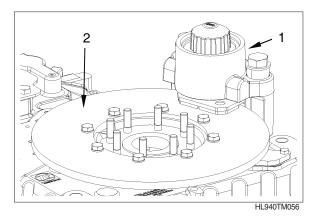

- 5) DISASSEMBLY OUTPUTS AND CLOSURE PARTS PUMP SHAFT (PTO-SHAFT)
- (1) Output flange on converter side
- ① Loosen hexagon screws (1), remove washer and O-ring.
- ② Pull off output flange (1) and remove shaft seal (2).

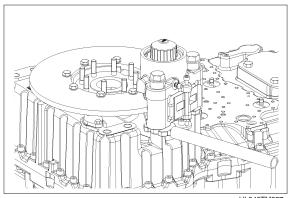


(2) Output flange on output side without parking brake

① Loosen hexagon screws (1), remove washer and O-ring.

② Pull off output flange (1) and remove shaft seal (2).


(3) Output flange on output side with parking brake

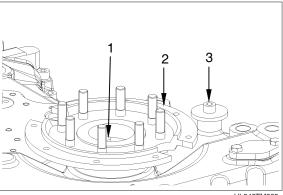

① Connect HP pump at port (see arrow) and apply approx. 80 bar pressure to the hydraulically actuated parking brake (1) until the brake disc (2) can be rotated by hand.

HP hand-operated pump 5870 287 007 MINIMESS coupling (M12×1.5) 5870 950 101

2 Loosen hexagon nut with open end wrench insert.

Open end wrench insert AA00 244 432

HL940TM057


HL940TM058

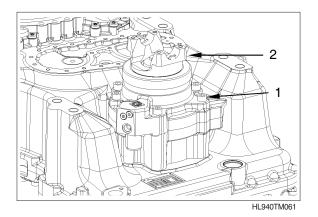
3 Loosen hexagon screws (2) and remove parking brake (1) (see TM058).

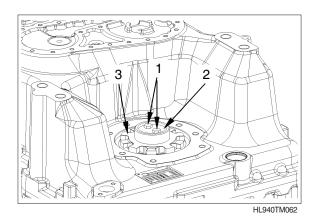
- ④ Loosen hexagon screws (2) of bolted brake disk/output flange connection and remove brake disk (3).
- 2 3

(5) Loosen hexagon screws (1), remove Pull-off output flange (2) and remove Remove cylinder screw with washer (3).

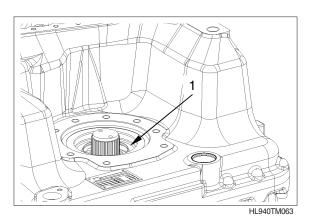
HL940TM060

(4) Output flange on converter side (with axle disconnection)

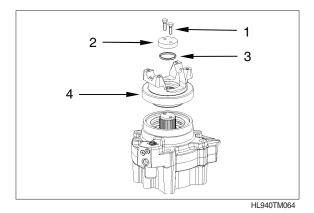

washer and O ring.

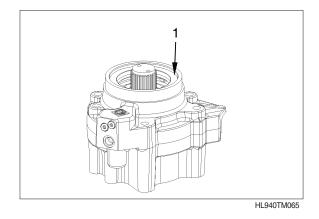

shaft seal.

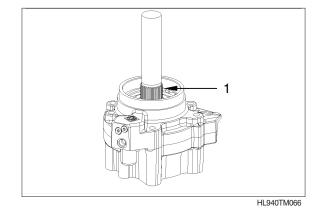
① Loosen cylinder screws (1) and separate axle disconnection (2) with two assembly levers from housing.

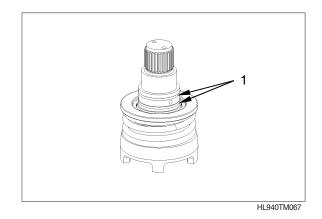

Assembly lever 5870 345 036

2 Loosen hexagon screws (1) and remove disk (2) and flange (3).

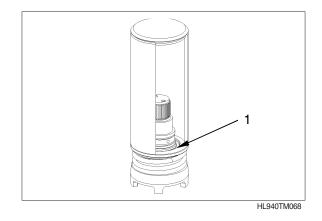


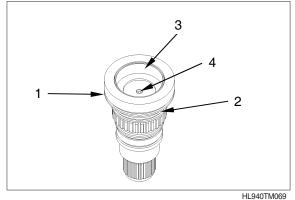

③ Remove screen (1).


(4) Loosen hexagon screws (1) and remove disk (2), O-ring (3) and output flange (4).


(5) Remove shaft seal (1).

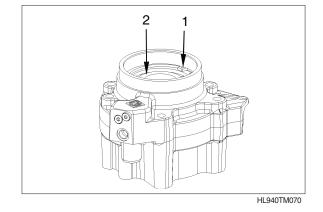
6 Push output shaft (1) out of ball bearing.


0 Remove both rectangular rings (1).

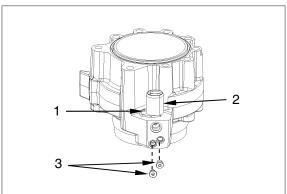

 8 Preload compression spring and disengage snap ring (1).
 Remove releasing single parts.

Press bush

5870 506 166

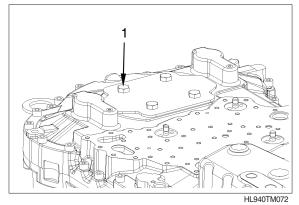


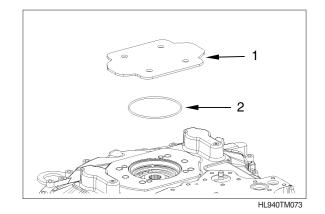
9 Remove both O-rings (1 and 2).
 If necessary, remove bearing bush (3) and orifice (4).


HL94011006

Unsnap retaining ring (1) and push ball bearing (2) out of the bearing hole.

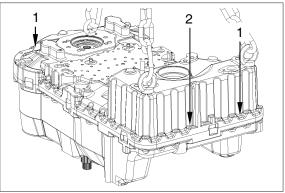
 Loosen cylinder screw (1) and remove holder.


Remove solenoid valve (2) from housing. Remove both screw plugs (3).

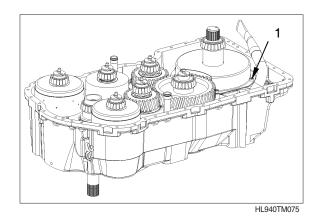

HL940TM071

(5) Closure parts pump shaft (PTO-shaft)

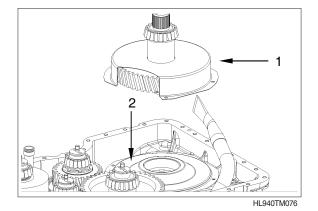
1 Loosen hexagon screws (1).

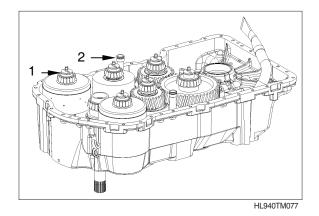


2 Remove cover (1) and O-ring (2).



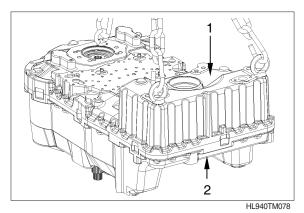
6) REMOVAL OF INPUT SHAFT, OUTPUT SHAFT, PUMP SHAFT (PTO-SHAFT) AND CLUTCHES

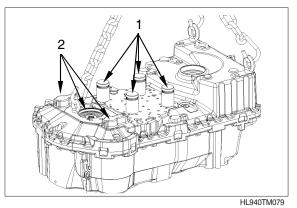

- (1) Force out both cylindrical pins (1).
 Loosen bolted connection (2) between housing front and rear part and separate housing rear part by means of lifting device.
- (2) Loosen bolted connection (1) of oil screen sheets.

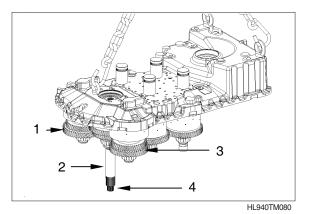

HL940TM074

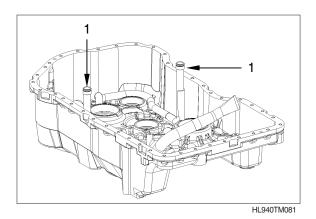
(3) Remove output shaft (1) and lower oil screen sheet (2) from housing.

(4) Remove all rectangular rings (1) from the clutches and all Orings (2) from the oil tubes.

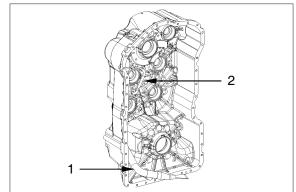



(5) Use lifting device to bring housing rear part (1) into contact position with housing front part (2) again.


- Due to the installation conditions, the removal of single clutches without using the special tool is not possible.
- (6) Fix all clutches K1, K2, K3 and K4 by means of handle (1).

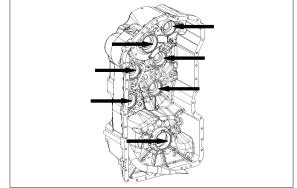

Handle 5870 260 010

- Clutches KV, KR and input shaft (2) are only fixed by the gear chain.
- (7) Separate housing rear part incl. clutches from housing front part by means of the lifting device and attaches it to the assembly truck.
 - 1 Clutch KV
 - 2 Input shaft
 - 3 Clutch KR
 - 4 Pump shaft
- Clutches KV, KR and input shaft are only fixed by the gear chain.
 Attention must be paid that the non-fixed components of the gear chain do not get loose.
- * Loosen cylindrical screws of oil tubes (1) in the housing front part and remove them.

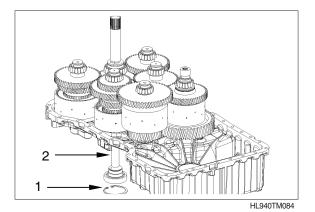


The suction tube (1) and the lubrication lines (2) are rolled in and are highly difficult to remove.

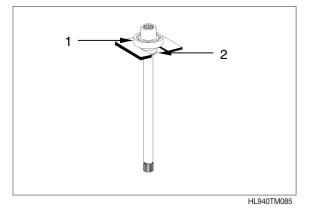
In case of damage, use of the appropriate ZF special tool is imperative for fitting or replacing these components.


Rolling tool

5870 600 003

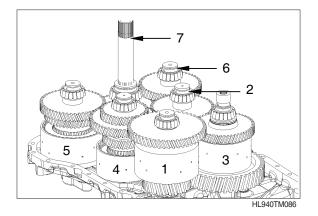


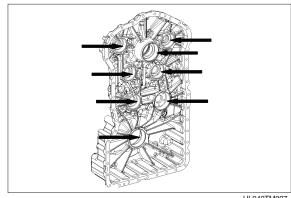
HL940TM082


- (8) Remove bearing outer rings (arrows) from the housing front part.
- If the tapered roller bearings of clutches, input and output are not replaced, it is imperative to ensure the previous pairing (bearing outer ring/ bearing inner ring).
- * Bearing outer ring and bearing inner ring must be marked.
- (9) Disengage retaining ring (1) and remove pump shafts (2).

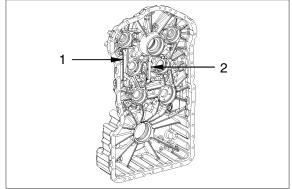
HL940TM083

(10) Press ball bearing (1) off the pump shaft.Snap out rectangular ring (2).


- (11) Lift the clutches out of the housing in numerical order as described in the legend.
 - 1 K1 clutch
 - 2 K2 clutch
 - 3 K3 clutch (Version with Emergency steering pump)
 - 4 K4 clutch
 - 5 KR clutch
 - 6 KV clutch
 - 7 input shaft
- (12) Remove bearing outer rings (arrows) from the housing rear part.

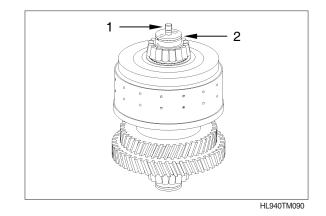

If the tapered roller bearings of clutches, input and output are not replaced, it is imperative to ensure the previous pairing (bearing outer ring/ bearing inner ring).

Bearing outer ring and bearing inner ring must be marked.


(13) The lubrication lines are rolled in (1 and 2) and are highly difficult to remove. In case of damage, use of the appropriate special tool is imperative for

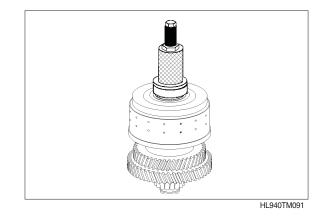
fitting or replacing these components.

HL940TM088

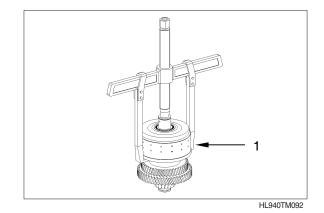

7) DISASSEMBLY : CLUTCHES KV / KR / K1 / K2 /K3 / K4 INPUT AND OUTPUT SHAFT

- K1 Clutch
- K2 Clutch
- K3 Clutch
- K4 Clutch
- KR Clutch
- KV Clutch
- AN Input shaft

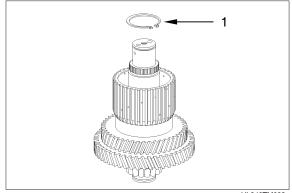
K2 KV K3 K1 K1 AN H1940TM08


(1) KV CLUTCH

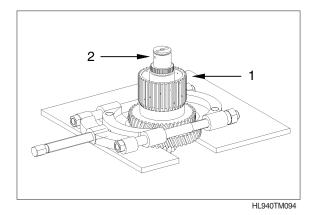
 Remove stud bolt (1) and snap out piston ring (2).

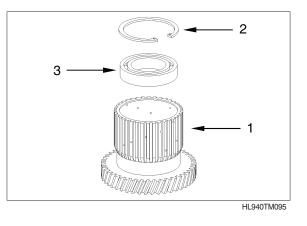


② Pull tapered roller bearing (inner ring) off the shaft.

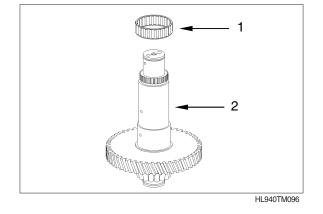

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

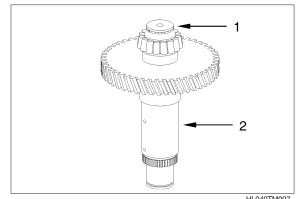
3 Pull clutch (1) off the shaft.


4 Snap out retaining ring (1).

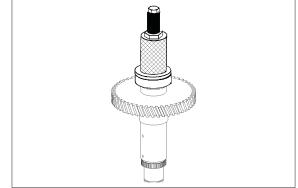

HL940TM093

(5) Fix idler gear (1) by means of cut-off device and press it off the clutch shaft (2).

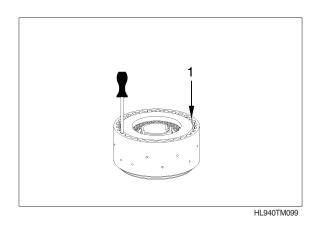

Cut-off device 5870 300 028


⑤ Snap retaining ring (2) out of the idler gear (1) and remove ball bearing (3).

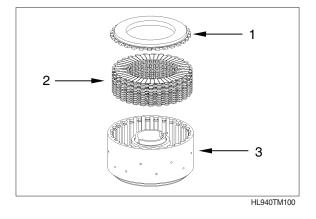
⑦ Remove needle cage (1) from the shaft (2).


 \circledast Turn shaft (2) by 180 $^{\circ}$ and snap out piston ring (1).

HL940TM097

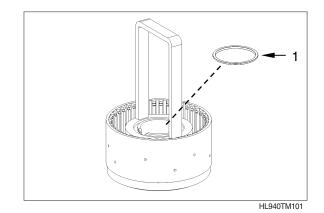

(9) Pull tapered roller bearing (inner ring) off the shaft.

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

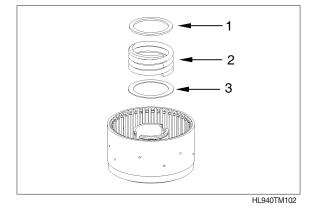


HL940TM098

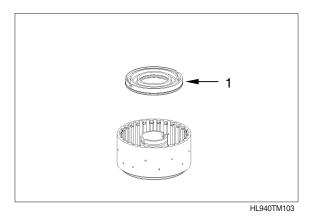
10 Unsnap snap ring (1).

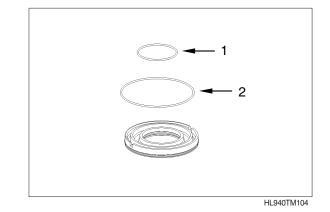


1 Remove end shim (1) and disc set (2) out the disc carrier (3).

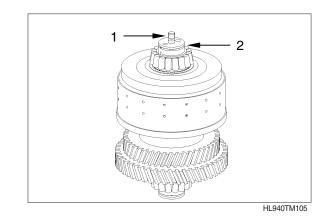


Preload compression spring (1) unsnap L-Ring.

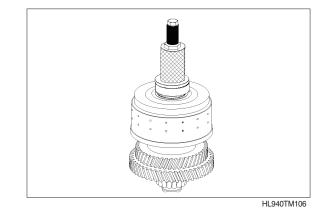

Assembly aid 5870 345 088


B Remove support shim (1), compression spring (2) and washer (3)

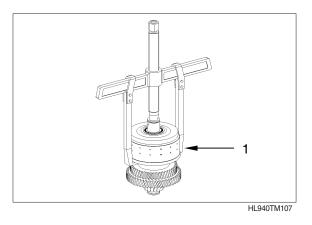
(4) Lift piston (1) by means of compressed air out of the cylinder bore and remove it.



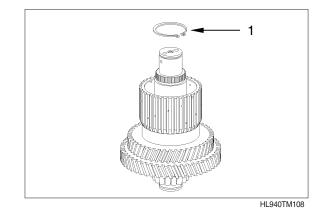
15 Remove both O-rings (1 and 2).


(2) KR clutch

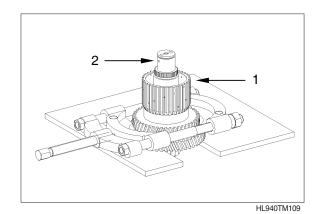
 Remove stud bolt (1) and snap out piston ring (2).



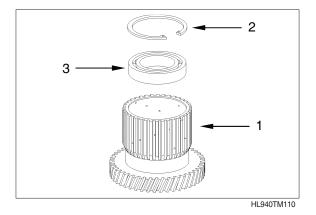
② Pull tapered roller bearing (inner ring) off the shaft.


Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

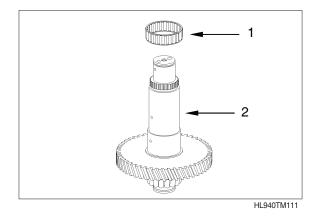
3 Pull clutch (1) off the shaft.

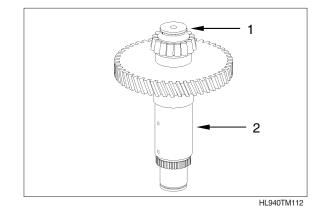


4 Snap out retaining ring (1).

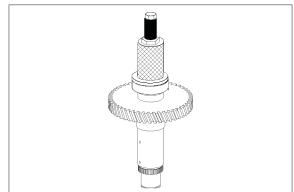


(5) Fix idler gear (1) by means of cut-off device and press it off the clutch shaft (2).

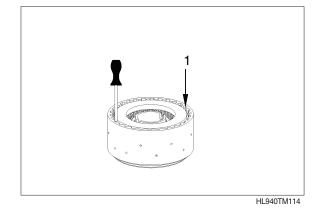

Cut-off device 5870 300 028


6 Snap retaining ring (2) out of the idler gear (1) and remove ball bearing (3).

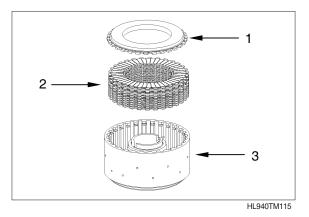
⑦ Remove needle cage (1) from the shaft (2).



⑧ Turn shaft (2) by 180° and snap out piston ring (1).

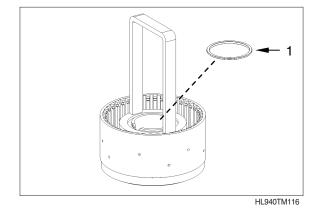

9 Pull tapered roller bearing (inner ring) off the shaft.

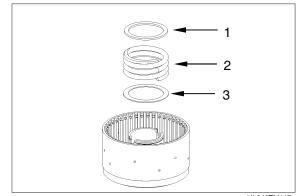
Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011



HL940TM113

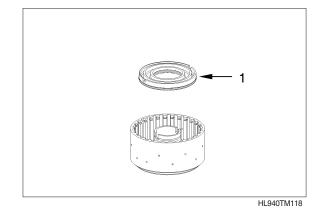
10 Unsnap snap ring (1).


 Remove end shim (1) and disc set (2) out the disc carrier (3).

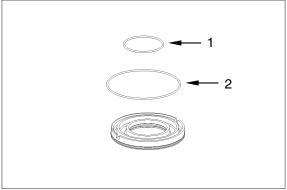

Preload compression spring (1) unsnap L-Ring.

Assembly aid 5870

5870 345 088



IB Remove support shim (1), compression spring (2) and washer (3)



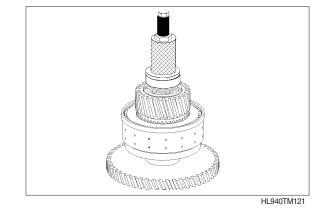
HL940TM117

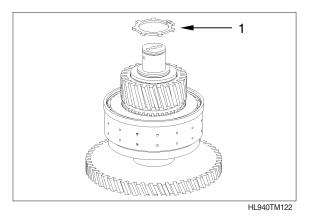
(4) Lift piston (1) by means of compressed air out of the cylinder bore and remove it.

(15) Remove both O-rings (1 and 2).

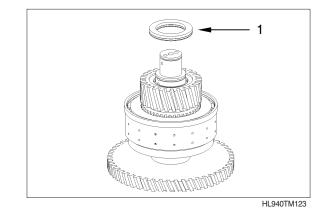
HL940TM119

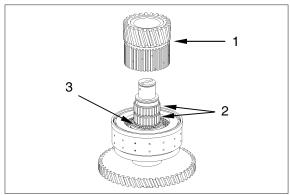
(3) K1 clutch


 Remove stud bolt (1) and snap out piston ring (2).

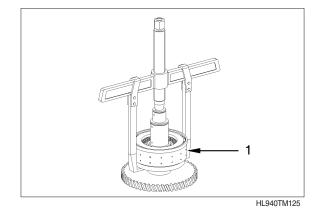

HL940TM120

② Pull tapered roller bearing (inner ring) off the shaft.

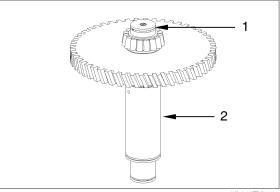

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011


3 Snap out retaining ring (1).

4 Remove axial bearing assy (1).

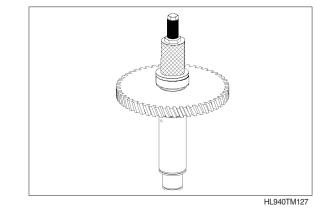


(5) Take off idler gear (1), remove needle cage (2) and axial bearing assy (3).



HL940TM124

6 Pull clutch (1) off the shaft.

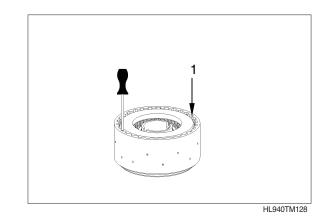
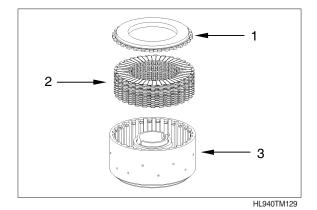

 Turn shaft (2) by 180° and snap out piston ring (1).

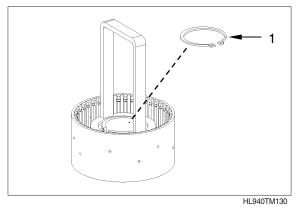
HL940TM126

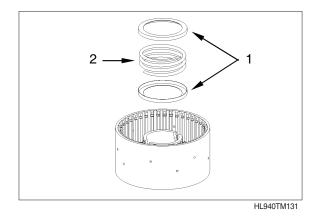
⑧ Pull tapered roller bearing (inner ring) off the shaft.

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

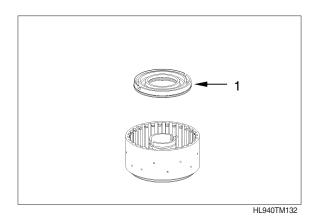
(9) Unsnap snap ring (1).

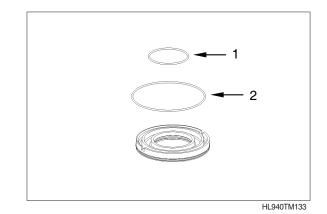




Image: Remove end shim (1) and disc set (2) out the disc carrier (3).

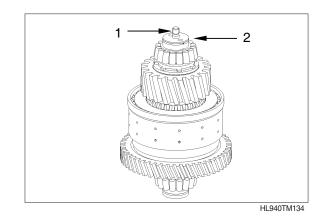

 Preload compression spring unsnap retaining ring (1).

Assembly aid

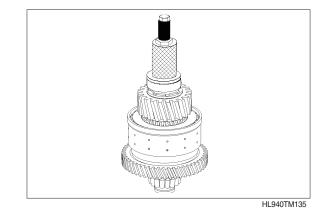

5870 345 088


Remove guide rings (1) and compression spring (2).

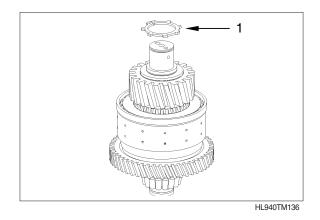
If piston (1) by means of compressed air out of the cylinder bore and remove it.



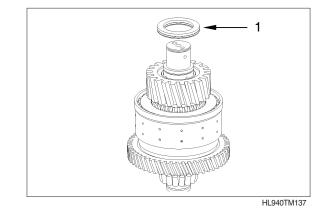
1 Remove both O-rings (1 and 2).

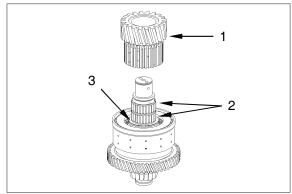

(4) K2 clutch

 Remove stud bolt (1) and snap out piston ring (2).

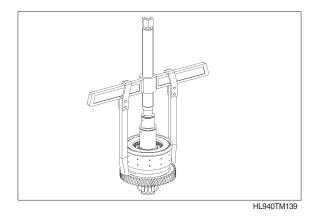


② Pull tapered roller bearing (inner ring) off the shaft.

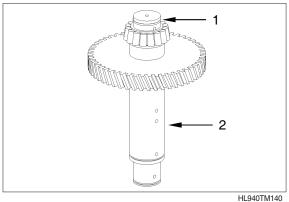

Forcing device Grab sleeve	5870 026 100 5873 001 057
or	
Rapid grip	5873 011 011


3 Snap out retaining ring (1).

4 Remove axial bearing assy (1).

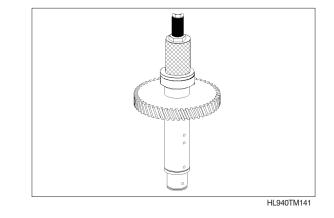


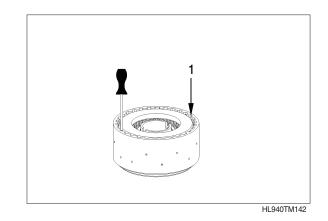
(5) Take off idler gear (1), remove needle cage (2) and axial bearing assy (3).



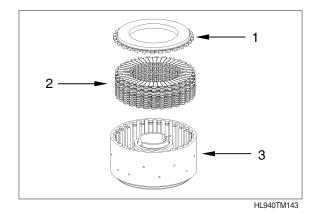
HL940TM138

6 Pull clutch (1) off the shaft.

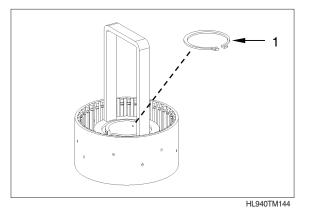

 Turn shaft (2) by 180° and snap out piston ring (1).

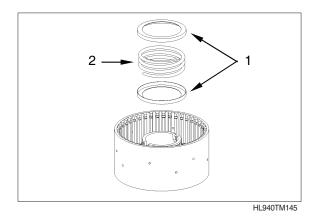

IM140

⑧ Pull tapered roller bearing (inner ring) off the shaft.

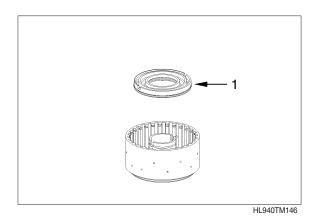

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

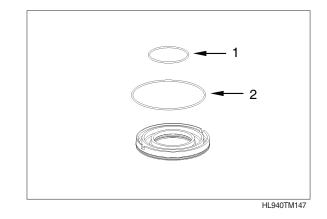
(9) Unsnap snap ring (1).


ID Remove end shim (1) and disc set (2) out the disc carrier (3).

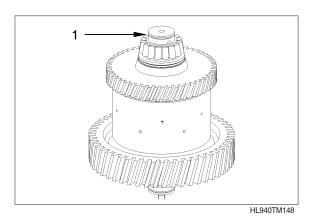

 Preload compression spring unsnap retaining ring (1).

Assembly aid

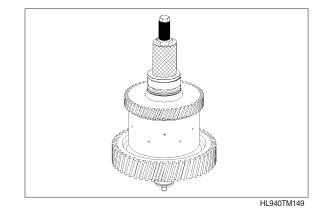

5870 345 088


Remove guide rings (1) and compression spring (2).

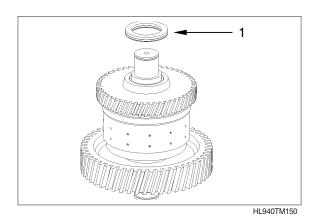
If piston (1) by means of compressed air out of the cylinder bore and remove it.



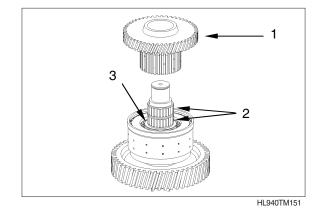
(1) Remove both O-rings (1 and 2).

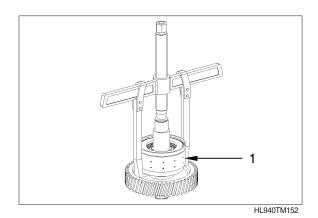

(5) K3 clutch

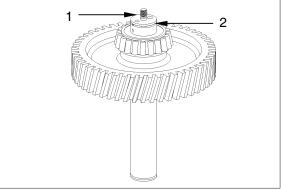
1 Snap out piston ring (1).



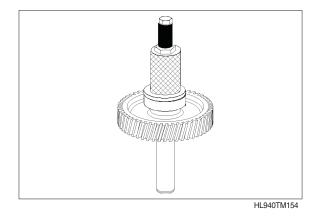
② Pull tapered roller bearing (inner ring) off the shaft.

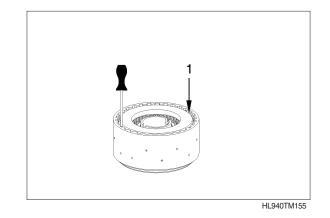

Forcing device	5870 026 100
Grab sleeve	5873 001 058
or	
Rapid grip	5873 011 011


3 Remove axial bearing assy (1).

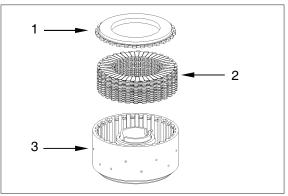

④ Take off idler gear (1), remove needle cage (2) and axial bearing assy (3).

5 Pull clutch (1) off the shaft.

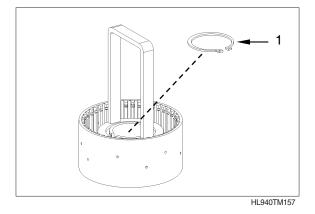

⑥ Remove stud bolt (1) and snap out piston ring (2).

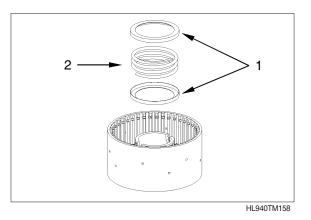

HL940TM153

⑦ Pull tapered roller bearing (inner ring) off the shaft.

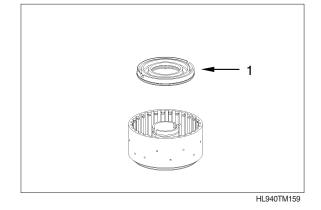

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

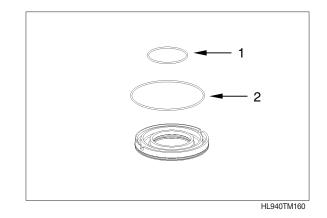
⑧ Unsnap snap ring (1).


(9) Remove end shim (1) and disc set (2) out the disc carrier (3).

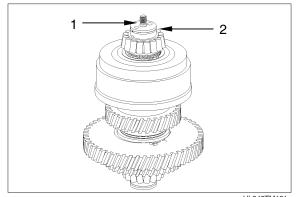

HL940TM156

IPreload compression spring (1) unsnap snap ring.


Assembly aid 5870 345 088

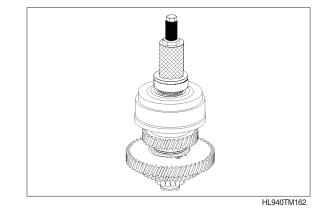

 Remove guide rings (1) and compression spring (2).

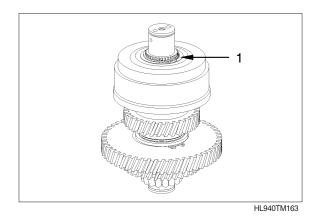
② Lift piston (1) by means of compressed air out of the cylinder bore and remove it.



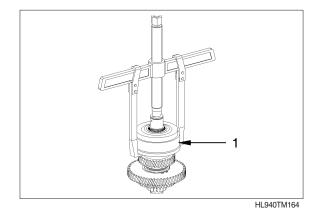
 ${\rm (i)}\,$ Remove both O-rings (1 and 2).

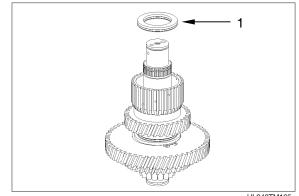
(6) K4 clutch


 Remove stud bolt (1) and snap out piston ring (2).

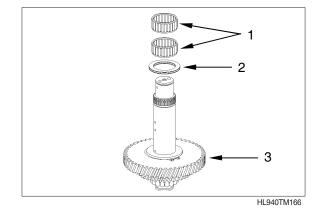

HL940TM161

② Pull tapered roller bearing (inner ring) off the shaft.

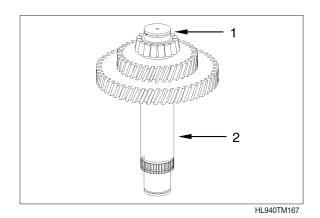

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011


3 Snap out retaining ring.

4 Pull clutch (1) off the shaft.

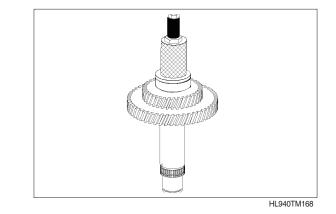


⑤ Remove axial bearing assy (1) and idler gear (2).



HL940TM165

- 6 Remove needle cage (1) and axial bearing assy (2).
- * The gear (3) cannot be removed (shrink fit).



⑦ Turn shaft (2) by 180° and snap out piston ring (1).

⑧ Pull tapered roller bearing (inner ring) off the shaft.

Forcing device	5870 026 100
Grab sleeve	5873 001 057
or	
Rapid grip	5873 011 011

(9) Unsnap snap ring (1).

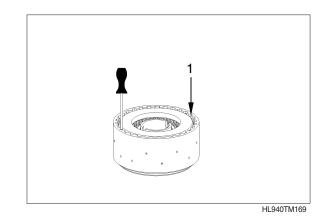
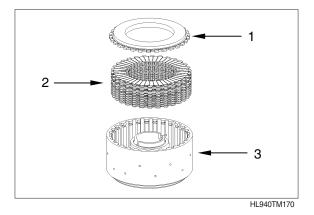
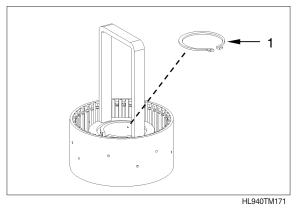
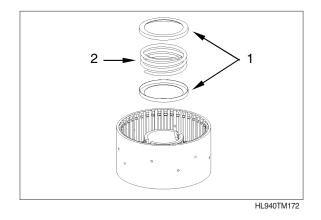
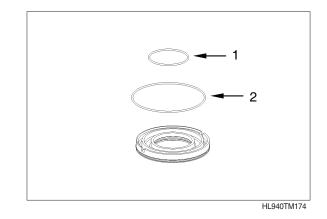




Image: Remove end shim (1) and disc set (2) out the disc carrier (3).

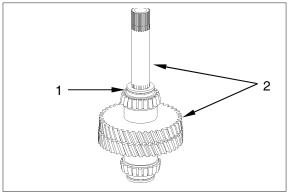


 Preload compression spring (1) unsnap snap ring.

Assembly aid 5870 345 088

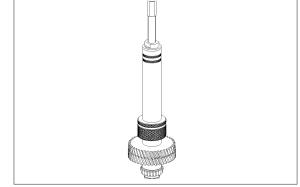

Remove guide rings (1) and compression spring (2).

I Lift piston (1) by means of compressed air out of the cylinder bore and remove it.



1 Remove both O-rings (1 and 2).

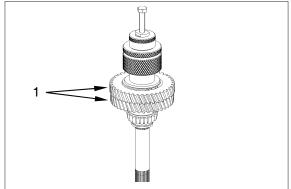
(7) Input shaft


- Snap out piston ring (1). Turbine wheel shaft and drive gear (2) are fixed by a snap ring.
- When separated, the components will be destroyed.

HL940TM175

② Pull tapered roller bearing (inner ring) off the drive gear.

Basic tool	5873 001 000
Grab sleeve	5873 001 058
or	
Rapid grip	5873 011 014



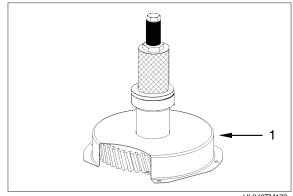
HL940TM176

③ Pull tapered roller bearing (inner ring) off the drive gear.

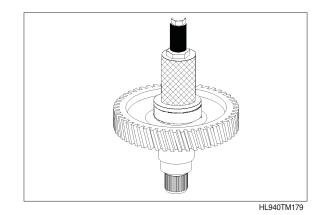
Grab sleeve Forcing device	5873 001 058 5870 026 100
or Rapid grip	5873 011 014
- 1 - 5 F	

It is not possible to separate input shaft and gear (1) -shrink fit.

HL940TM177


(8) Output shaft

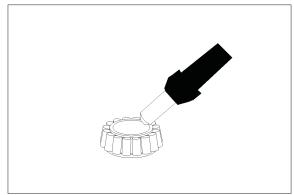
 Pull tapered roller bearing (inner ring) off the output shaft and remove oil screen sheet (1).


Basic tool	5873 001 000
Grab sleeve	5873 001 058
or	
Rapid grip	5873 011 014

② Turn output shaft by 180° and pull off tapered roller bearing (inner ring).

Basic tool	5873 001 000
Grab sleeve	5873 001 058
or	
Rapid grip	5873 011 014

HL940TM178

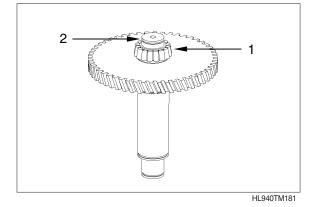


8) REASSEMBLY

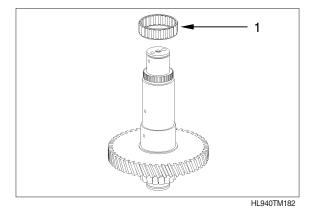
Clutches KV / KR / K1 / K2 / K3 / K4 input and output shaft

(1) KV clutch

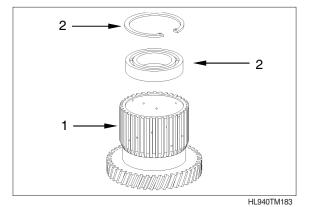
 Heat up bearing inner ring (approx. 120°C).

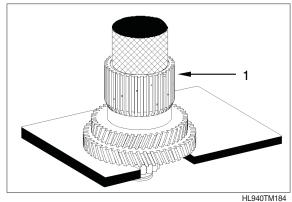


HL940TM180

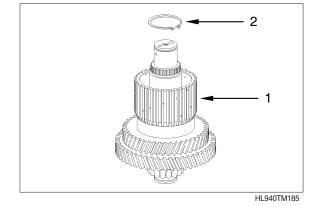

② Mount bearing inner ring (1) until contact is obtained.

Fit rectangular ring 40 \times 2.5 (2).


 Wear protective gloves.
 Adjust bearing inner ring after coolingdown.

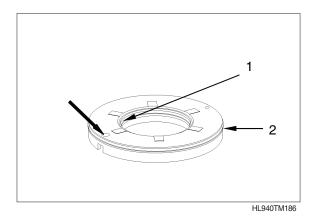

(3) Mount needle bearing $60 \times 68 \times 20$ (1) onto the shaft and oil it.

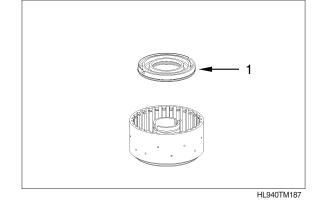
④ Install ball bearing (2) into the idler gear
 (1) until contact is obtained and fix it by means of retaining ring 90×3 (3).



⑤ Press in preassembled idler gear (1) until contact is obtained.

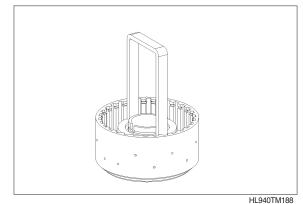
HL9401101184


 \bigcirc Fix idler gear (1) by means of retaining ring 55 \times 2 (2).


⑦ Place both O-rings (1 and 2) into the piston grooves and oil them.

 $1 = 75 \times 3$ $2 = 142 \times 3$

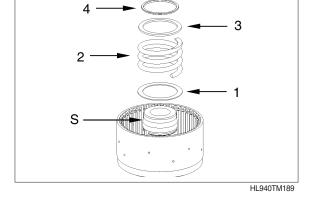
* Check function of the drain valve (see arrow) - There must be no jamming of the ball.


- 8 Place piston (1) into the disk carrier.
- * Observe installation position, see figure.

Ise a hand-operated press to place piston into the disk carrier by means of the assembly aid.

Assembly aid

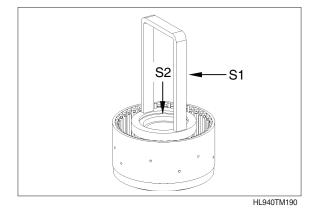
5870 345 088

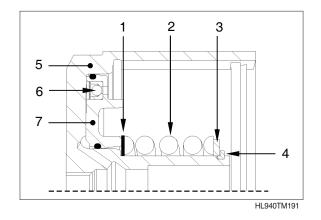

HL9401M188

 Mount inner installer (S) onto the disk carrier.
 Install disk (1), compression spring (2),

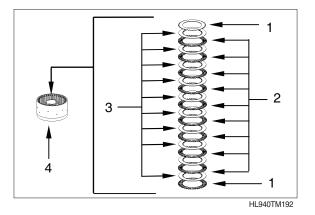
support shim (3) and Lring (4).

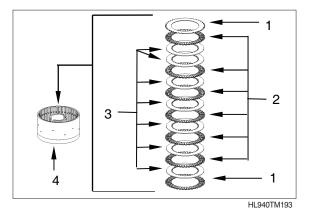
 Installation position support shim and L-ring see TM191.

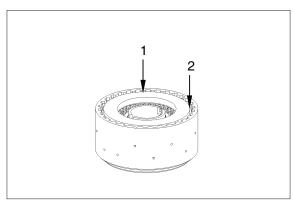

Inner installer \rightarrow see TM190.



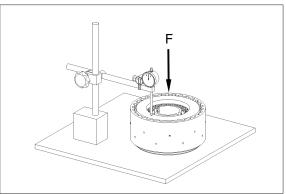
 Preload compression spring by means of assembly aid (S1) and pressure piece (S2), until L-Ring has engaged into the annular groove.

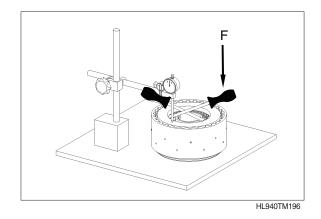

Assembly aid	5870 345 088
Assembly fixture	5870 345 124
(Inner installer and pressure piece)	

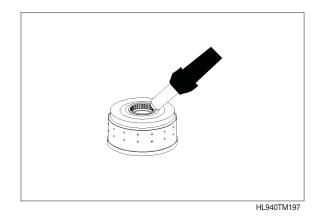

- % It is always necessary to mount a new L-ring.
- 1 Disk carrier with piston retraction:
 - 1 Washer
 - 2 Compression spring
 - 3 Support shim
 - 4 L-Ring
 - 5 Disk carrier
 - 6 Drain valve (piston)
 - 7 Piston with O-Rings

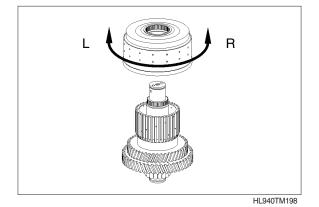


- Different clutches (disc arrangements with relevant disc clearance) can be installed, depending on the parts list version.
- The actually installed clutch and disc arrangement must be taken from the corresponding spare parts list.
- Figure no.: TM192 and TM193 illustrates the different disc arrangements.
- * The spare parts list shall be binding.
- Install outer and inner disks alternately into the disk carrier (4) as personated in TM192.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (10 pcs)
 - 3 Inner disks (10 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate. Number of friction surfaces; 20.
- Install outer and inner disks alternately into the disk carrier (4) as personated in TM193.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (6 pcs)
 - 3 Inner disks (7 pcs)
- Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plat.
 Number of friction surfaces: 12.
- I5 Mount end plate (1) and fix disk package by means of snap ring (2) (e.g. thickness = 2.65 mm / recommended value).

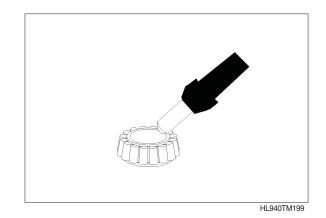


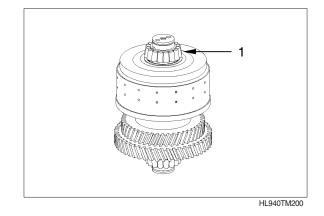

HL940TM194


(b) Press on end plate with F (approx. 100 N = 10 kg) and set dial indicator to "zero".

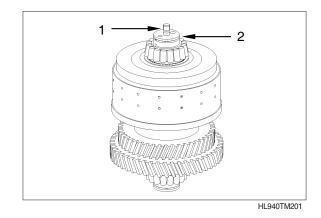

HL940TM195

- ⑦ Then press end plate against the snap ring (upwards) and read disk clearance.
- Disk clearance : 2.45 to 2.75 mm (see TM192)
- Disk clearance : 1.70 to 2.00 mm (see TM193)
- In case of deviations, the disk clearance must be corrected with an appropriate snap ring (optional thicknesses = 2.1~ 4.2 mm).
- (B) Heat up clutch inner diameter (approx. 120°C).

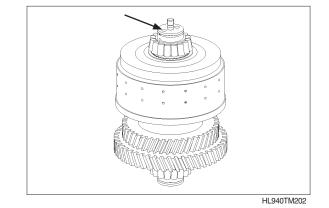



- Install clutch until contact is obtained. Mount inner disks onto the inner disk carrier by means of short left/right rotations.
- * Wear protective gloves.

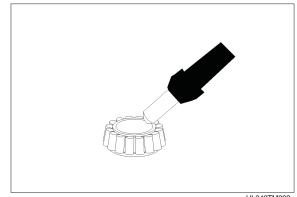
 ② Heat up bearing inner ring (approx. 120° C)


- ② Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

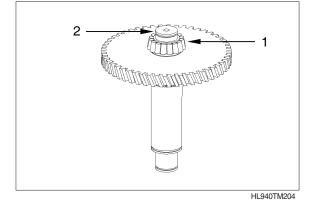
22 Mount stud bolt (1).


 \cdot Tightening torque (M10 /8.8 \times 16) : 1.73 kgf \cdot m (12.6 lbf \cdot ft)

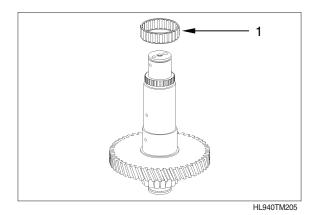
Fit rectangular ring 40 \times 2.5 (2).


* Check closing and opening of the clutch by means of compressed air at the hole (see arrow).

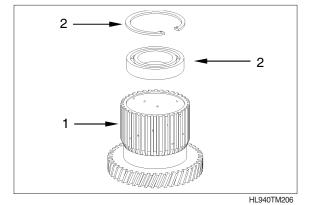
Closing and opening of the clutch must be clearly audible.

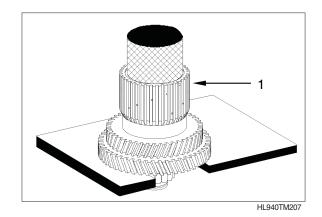

(2) KR clutch

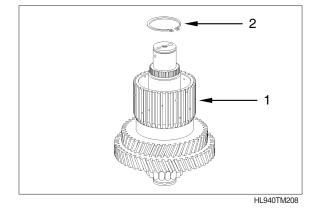
(1) Heat up bearing inner ring (approx. 120°C).



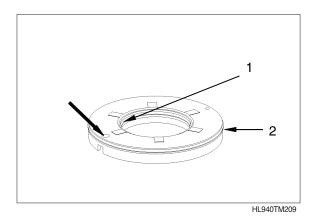
HL940TM203

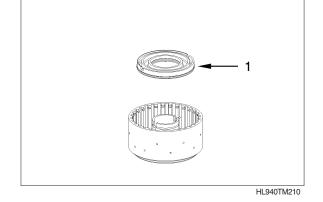

- 2 Mount bearing inner ring (1) until contact is obtained.
 Fit rectangular ring 40×2.5 (2).
- Wear protective gloves.
 Adjust bearing inner ring after coolingdown.


(3) Mount needle bearing $60 \times 68 \times 20$ (1) onto the shaft and oil it.


④ Install ball bearing (2) into the idler gear
 (1) until contact is obtained and fix it by means of retaining ring 90×3 (3).

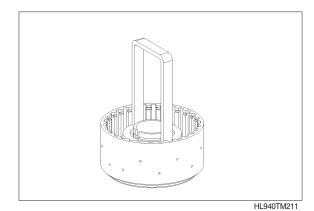
⑤ Press in preassembled idler gear (1) until contact is obtained.


6 Fix idler gear (1) by means of retaining ring 55 \times 2 (2).


⑦ Place both O rings (1 and 2) into the piston grooves and oil them.

 $1 = 75 \times 3$ $2 = 142 \times 3$

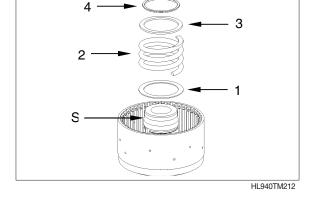
* Check function of the drain valve (see arrow) - There must be no jamming of the ball.


- 8 Place piston (1) into the disk carrier.
- $\$ Observe installation position, see figure.

Ise a hand-operated press to place piston into the disk carrier by means of the assembly aid.

Assembly aid

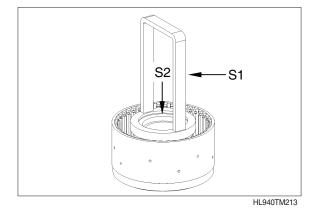
5870 345 088

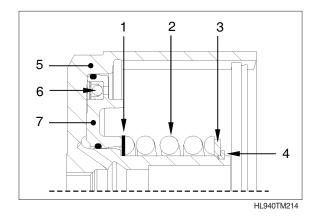


 Mount inner installer (S) onto the disk carrier.
 Install disk (1), compression spring (2),

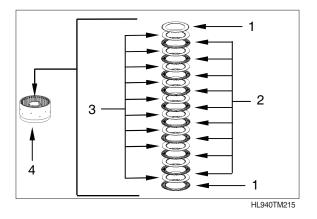
support shim (3) and Lring (4).

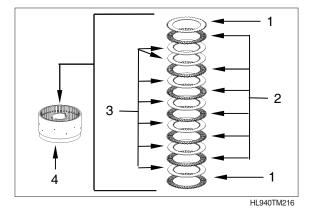
 Installation position support shim and L-ring see TM214.

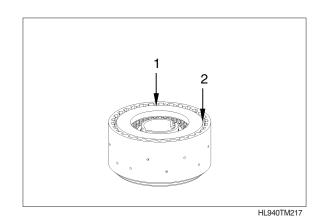

Inner installer \rightarrow see TM213.

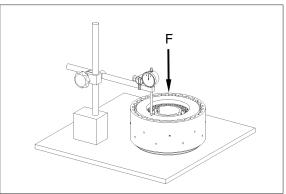


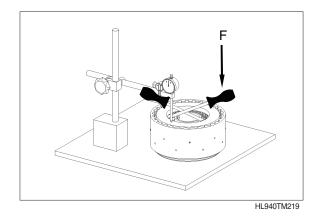
 Preload compression spring by means of assembly aid (S1) and pressure piece (S2), until L-Ring has engaged into the annular groove.

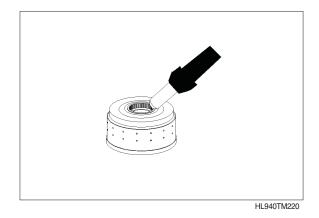

Assembly aid	5870 345 088	
Assembly fixture	5870 345 124	
(Inner installer and pressure piece)		

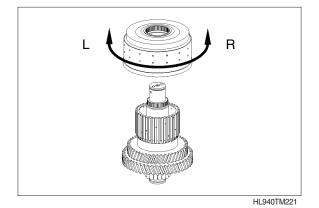

- % It is always necessary to mount a new L-ring.
- 1 Disk carrier with piston retraction:
 - 1 Washer
 - 2 Compression spring
 - 3 Support shim
 - 4 L-Ring
 - 5 Disk carrier
 - 6 Drain valve (piston)
 - 7 Piston with O-Rings



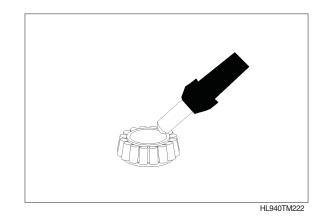

- Different clutches (disc arrangements with relevant disc clearance) can be installed, depending on the parts list version.
- * The actually installed clutch and disc arrangement must be taken from the corresponding spare parts list.
- Figure no.: TM215 and TM216 illustrates the different disc arrangements.
- * The spare parts list shall be binding.
- Install outer and inner disks alternately into the disk carrier (4) as personated in TM215.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (9 pcs)
 - 3 Inner disks (10 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate. Number of friction surfaces : 20
- Install outer and inner disks alternately into the disk carrier (4) as personated in TM216.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (6 pcs)
 - 3 Inner disks (7 pcs)
- Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate.
 Number of friction surfaces : 12
- I5 Mount end plate (1) and fix disk package by means of snap ring (2) (e.g. thickness = 2.65 mm / recommended value).

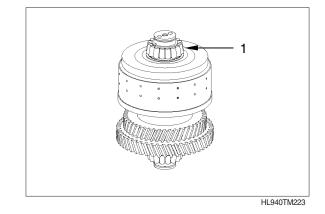



(b) Press on end plate with F (approx. 100 N = 10 kg) and set dial indicator to "zero".

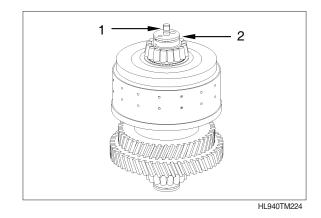

HL940TM218

- ⑦ Then press end plate against the snap ring (upwards) and read disk clearance.
- Disk clearance : 2.45 to 2.75 mm (see TM215)
- Disk clearance : 1.70 to 2.00 mm (see TM216)
- In case of deviations, the disk clearance must be corrected with an appropriate snap ring (optional thicknesses = 2.1~ 4.2 mm).
- B Heat up clutch inner diameter (approx. 120°C).

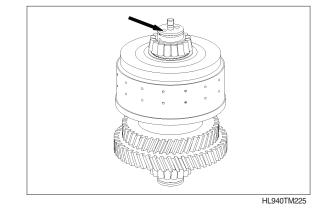



- Install clutch until contact is obtained. Mount inner disks onto the inner disk carrier by means of short left/right rotations.
- * Wear protective gloves.

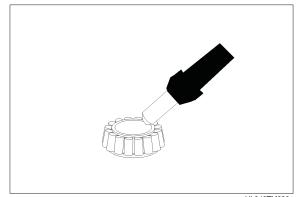
② Heat up bearing inner ring (approx. 120°
 C)


- ② Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

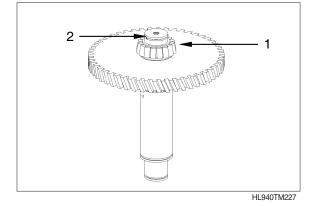
22 Mount stud bolt (1).


 \cdot Tightening torque (M10 /8.8 \times 16) : 1.73 kgf \cdot m (12.6 lbf \cdot ft)

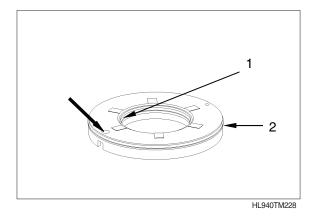
Fit rectangular ring 40 \times 2.5 (2).


* Check closing and opening of the clutch by means of compressed air at the hole (see arrow).

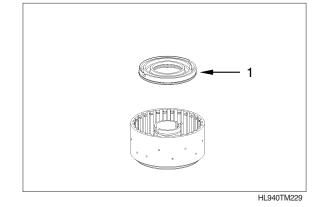
Closing and opening of the clutch must be clearly audible.


(3) Clutch K1

(1) Heat up bearing inner ring (approx. 120°C).

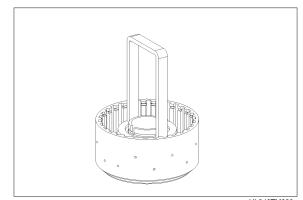

HL940TM226

- 2 Mount bearing inner ring (1) until contact is obtained.
 Fit rectangular ring 40×2.5 (2).
- Wear protective gloves.
 Adjust bearing inner ring after coolingdown.

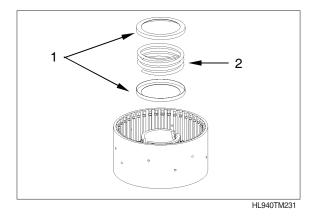


- ③ Place both O rings (1 and 2) into the piston grooves and oil them.
 - $1 = 75 \times 3$ $2 = 142 \times 3$

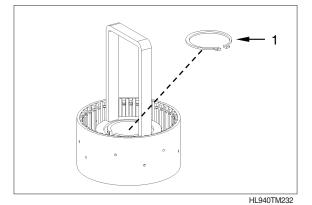
Check function of the drain


- 4 Place piston (1) into the disk carrier.
- * Observe installation position, see figure.

(5) Use a hand-operated press to place piston into the disk carrier by means of the assembly aid.


Assembly aid

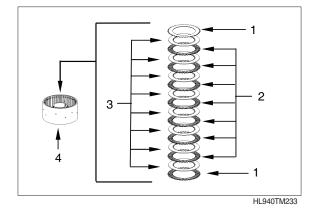
5870 345 088

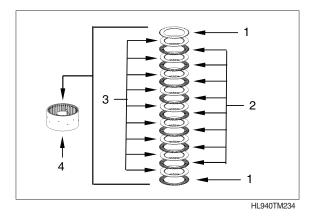


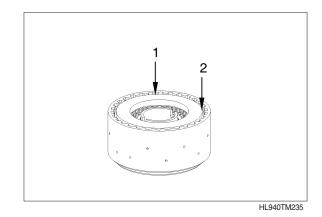
HL940TM230

6 Mount guide rings (1) and compression spring (2).

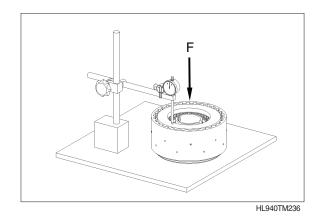
- (7) Preload pressure spring by means of assembly aid and fix with retaining ring 70×2.5 (1).
- * Assembly aid 5870 345 088

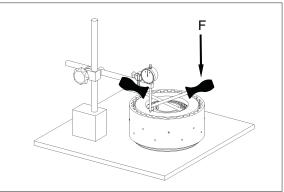



- Different clutches (disc arrangements with relevant disc clearance) can be installed, depending on the parts list version.
- The actually installed clutch and disc arrangement must be taken from the corresponding spare parts list.
- Figure no.: TM233 and TM234 illustrates the different disc arrangements.

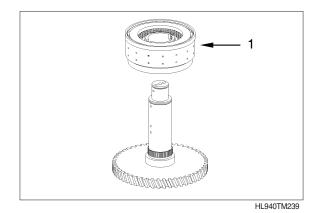

- ⑧ Install outer and inner disks alternately into the disk carrier (4) as personated in TM233.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (7 pcs)
 - 3 Inner disks (8 pcs)
- Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate.
 Number of friction surfaces : 16
- (9) Install outer and inner disks alternately into the disk carrier (4) as personated in TM234.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (8 pcs)
 - 3 Inner disks (9 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate.

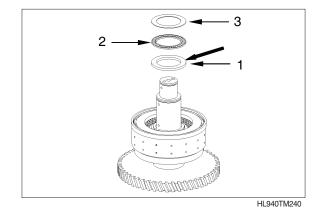
Number of friction surfaces : 18

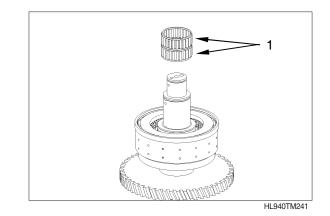

 Mount end plate (1) and fix disk package by means of snap ring (2) (e.g. thickness = 2.65 mm / recommended value).



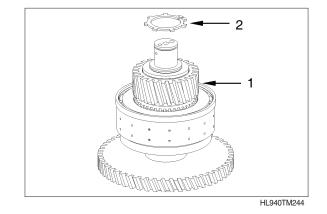
 Press on end plate with F (approx. 100 N = 10 kg) and set dial indicator to "zero".

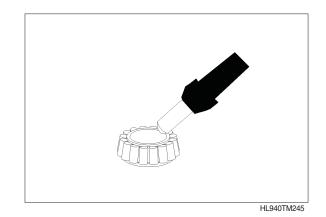

- ② Then press end plate against the snap ring (upwards) and read disk clearance.
- % Disk clearance : 2.00 to 2.30 mm (see TM233)
- % Disk clearance : 2.50 to 2.80 mm (see TM234)
- In case of deviations, the disk clearance must be corrected with an appropriate snap ring (optional thicknesses = 2.1~ 4.2 mm).
- Image: Beat up clutch inner diameter (approx. 120°C).


HL940TM237

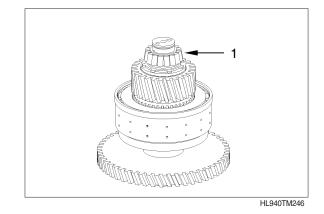

- (4) Mount clutch (1) until contact is obtained.
- * Wear protective gloves.

- (b) Mount running disk $55 \times 78 \times 5$ (1), axial cage $55 \times 78 \times 3$ (2) and axial washer $55 \times 78 \times 1$ (3) and oil it.
- Install chamfer (see arrow) of running disk (1) showing towards the axial cage.

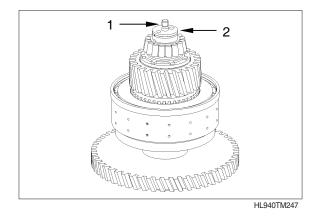

(f) Mount needle cage $55 \times 63 \times 50$ (1) and oil it.


17 Install (1) idler

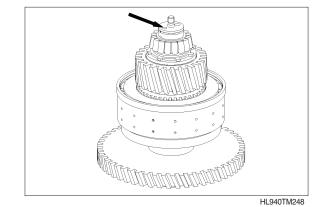
Mount inner disks onto the inner disk carrier (idler) by means of short left/right rotations.


- L P I
- (B) Mount axial washer $55 \times 78 \times 1$ (1), axial cage $55 \times 78 \times 3$ (2) and running disk $55 \times 78 \times 5$ (3) and oil it.
- Install chamfer (see arrow) of running disk (3) showing towards the axial cage.
- (9) Fix idler gear (1) and single parts by means of retaining ring (2).

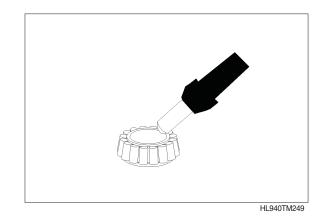
② Heat up bearing inner ring (approx. 120°
 C)


- ② Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

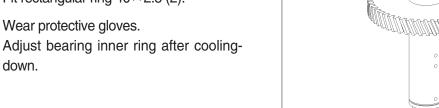
22 Mount stud bolt (1).

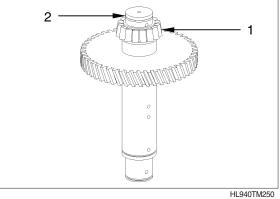

 \cdot Tightening torque (M10 /8.8 \times 16) : 1.73 kgf \cdot m (12.6 lbf \cdot ft)

Fit rectangular ring 40 \times 2.5 (2).


* Check closing and opening of the clutch by means of compressed air at the hole (see arrow).

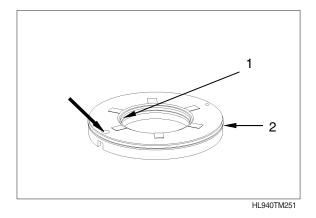
Closing and opening of the clutch must be clearly audible.


(4) K2 clutch

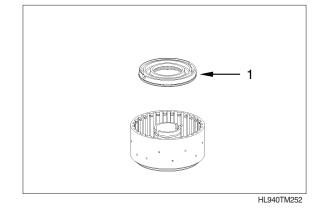

① Heat up bearing inner ring (approx. 120°C).

② Mount bearing inner ring (1) until contact is obtained. Fit rectangular ring 40×2.5 (2).

* Wear protective gloves.

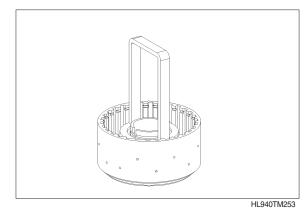


③ Place both O rings (1 and 2) into the piston grooves and oil them.

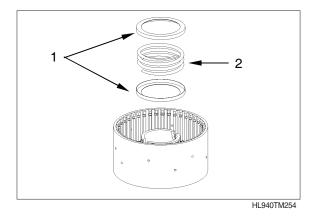


down.

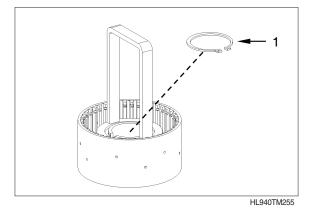
* Check function of the drain valve (see arrow) - There must be no jamming of the ball.


- ④ Place piston (1) into the disk carrier.
- * Observe installation position, see figure.

(5) Use a hand-operated press to place piston into the disk carrier by means of the assembly aid.

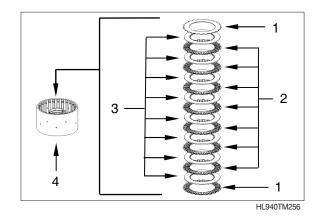

Assembly aid

5870 345 088

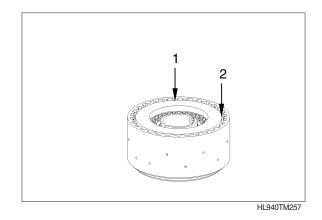


HL94011VI253

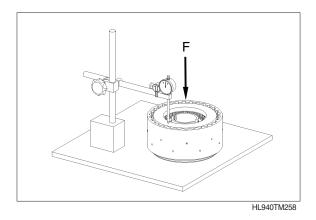
6 Mount guide rings (1) and compression spring (2).

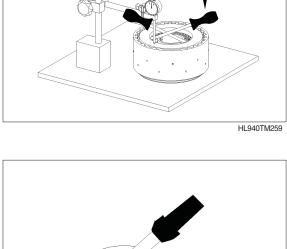


- ⑦ Preload pressure spring by means of assembly aid and fix with retaining ring 58×2 (1).
- * Assembly aid 5870 345 088



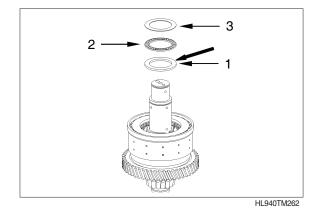
- ⑧ Install outer and inner disks alternately into the disk carrier (4) as personated in TM256.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (7 pcs)
 - 3 Inner disks (8 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate.


Number of friction surfaces : 16

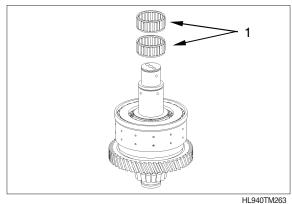

 9 Mount end plate (1) and fix disk package by means of snap ring (2) (e.g. thickness = 2.65 mm / recommended value).

 Press on end plate with F (approx. 100 N = 10 kg) and set dial indicator to "zero".

- Then press end plate against the snap ring (upwards) and read disk clearance.
- * Disk clearance : 2.00 to 2.30 mm
- In case of deviations, the disk clearance must be corrected with an appropriate snap ring (optional thicknesses = 2.1~ 4.2 mm).
- 1 Heat up clutch inner diameter (approx. 120°C).

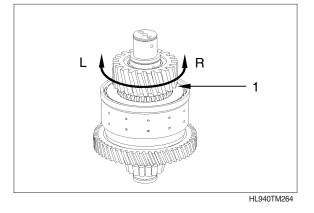

HL940TM260

- (1) Mount clutch (1) until contact is obtained.
- * Wear protective gloves.

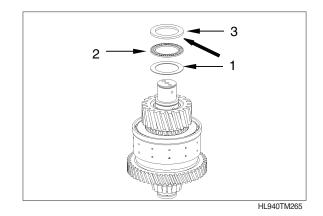


HL940TM261

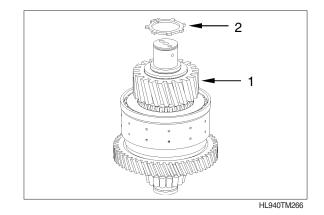
- (4) Mount running disk $50 \times 70 \times 4$ (1), axial cage 50 \times 70 \times 3 (2) and axial washer $50 \times 70 \times 1$ (3) and oil it.
- * Install chamfer (see arrow) of running disk (1) showing towards the axial cage.

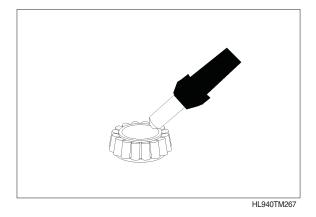


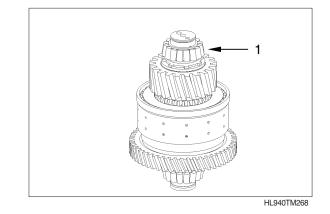
15 Mount needle cage $50 \times 58 \times 50$ (1) and oil it.



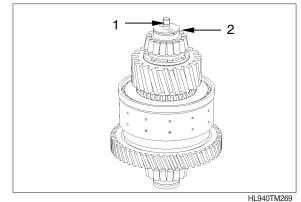
16 Install (1) idler


Mount inner disks onto the inner disk carrier (idler) by means of short left/right rotations.


- (7) Mount axial washer $50 \times 70 \times 1$ (1), axial cage $50 \times 70 \times 3$ (2) and running disk $50 \times 70 \times 4$ (3) and oil it.
- Install chamfer (see arrow) of running disk (3) showing towards the axial cage.

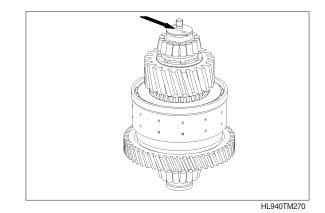

(B) Fix idler gear (1) and single parts by means of retaining ring (2).

(9) Heat up bearing inner ring (approx. 120°C)

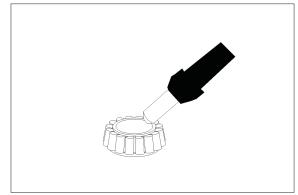


- ② Mount bearing inner ring (1) until contact is obtained.
- Wear protective gloves.
 Adjust bearing inner ring after coolingdown.

2 Mount stud bolt (1).


 \cdot Tightening torque (M10 /8.8 \times 16) : 1.73 kgf \cdot m (12.6 lbf \cdot ft) Fit rectangular ring 40 \times 2.5 (2).

HL9401M269

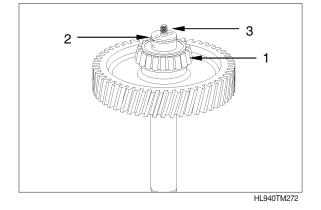

* Check closing and opening of the clutch by means of compressed air at the hole (see arrow).

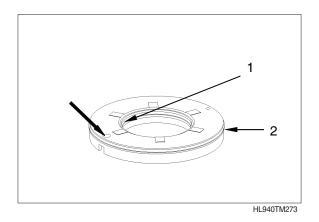
Closing and opening of the clutch must be clearly audible.

(5) K3 clutch

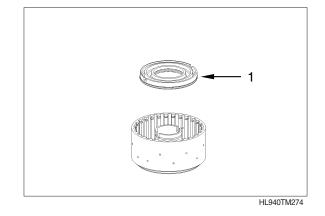
 Heat up bearing inner ring (approx. 120°C).

HL940TM271

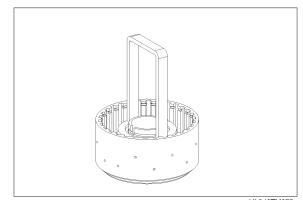

② Mount bearing inner ring (1) until contact is obtained.


Fit rectangular ring 40 \times 2.5 (2).

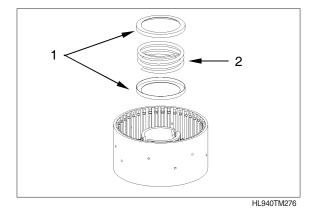
 Wear protective gloves.
 Adjust bearing inner ring after coolingdown.


Mount stud bolt (3).

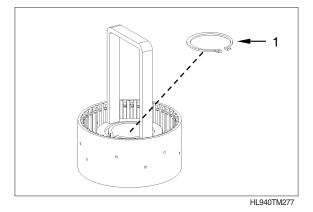
- \cdot Tightening torque (M10 /8.8 \times 16) : 1.73 kgf \cdot m (12.6 lbf \cdot ft)
- ③ Place both O rings (1 and 2) into the piston grooves and oil them.
 - $1 = 64 \times 3$ $2 = 120 \times 3$
- * Check function of the drain valve (see arrow) There must be no jamming of the ball.


- ④ Place piston (1) into the disk carrier.
- * Observe installation position, see figure.

(5) Use a hand-operated press to place piston into the disk carrier by means of the assembly aid.

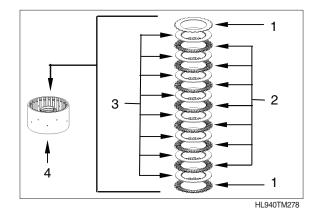

Assembly aid

5870 345 088

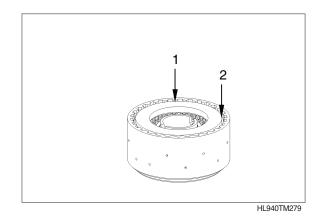


HL940TM275

6 Mount guide rings (1) and compression spring (2).

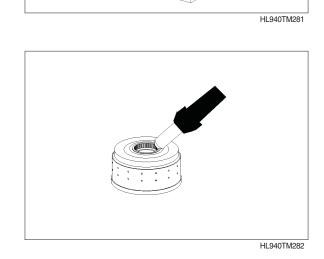


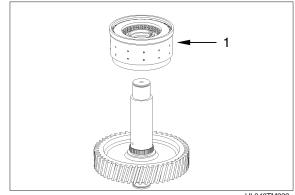
- ⑦ Preload pressure spring by means of assembly aid and fix with retaining ring 58×2 (1).
- * Assembly aid 5870 345 088



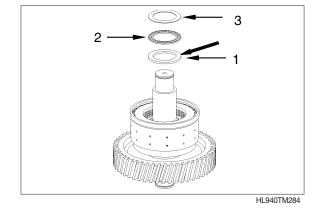
- ⑧ Install outer and inner disks alternately into the disk carrier (4) as personated in TM278.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Outer disks (7 pcs)
 - 3 Inner disks (8 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate.


Number of friction surfaces : 16

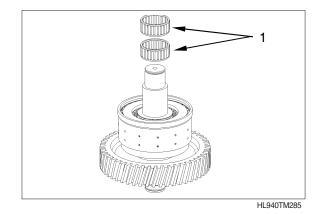

 9 Mount end plate (1) and fix disk package by means of snap ring (2) (e.g. thickness = 2.65 mm / recommended value).


 Press on end plate with F (approx. 100 N = 10 kg) and set dial indicator to "zero".

- Then press end plate against the snap ring (upwards) and read disk clearance.
- * Disk clearance : 2.00 to 2.30 mm
- In case of deviations, the disk clearance must be corrected with an appropriate snap ring (optional thicknesses = 2.1~ 4.2 mm).
- Heat up clutch inner diameter (approx. 120°C).

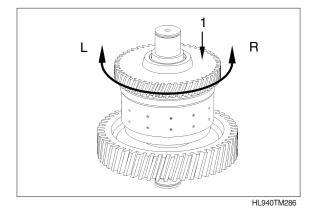


- (1) Mount clutch (1) until contact is obtained.
- * Wear protective gloves.



HL940TM283

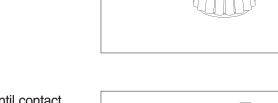
- (a) Mount running disk $50 \times 70 \times 4$ (1), axial cage $50 \times 70 \times 3$ (2) and axial washer $50 \times 70 \times 1$ (3) and oil it.
- Install chamfer (see arrow) of running disk (1) showing towards the axial cage.



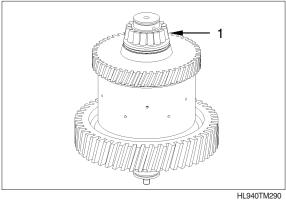
5 Mount needle cage 50 \times 58 \times 50 (1) and oil it.

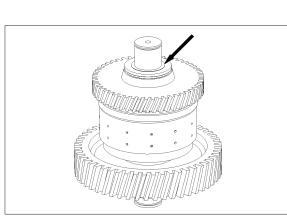
16 Install (1) idler

Mount inner disks onto the inner disk carrier (idler) by means of short left/right rotations.



- Mount axial washer 50 \times 70 \times 1 (1), axial cage $50 \times 70 \times 3$ (2) and running disk $50 \times 70 \times 4$ (3) and oil it.
- * Install chamfer (see arrow) of running disk (3) showing towards the axial cage.

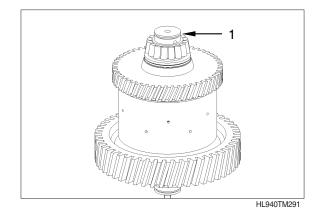

* Pay attention that the running disk is flush with the shaft (see arrow) collar to ensure that all inner disks are mounted on the idler gear teeth.


120°C)

(18) Heat up bearing inner ring (approx.

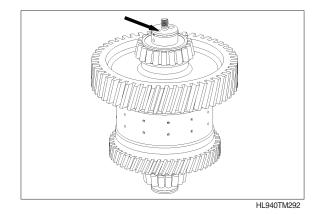
- 19 Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves. Adjust bearing inner ring after coolingdown.

2

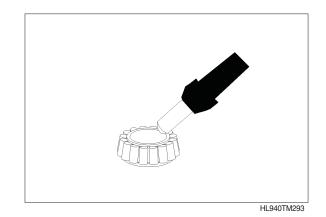

HL940TM288

HL940TM289

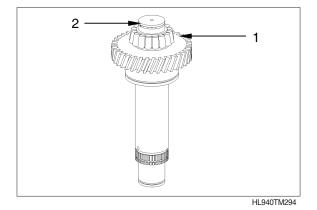
3


1

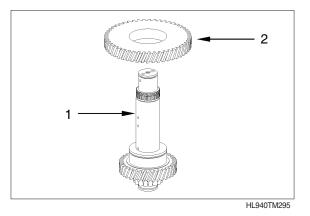
0 Fit rectangular ring 40 \times 2.5 (1).


* Check closing and opening of the clutch by means of compressed air at the hole (see arrow).

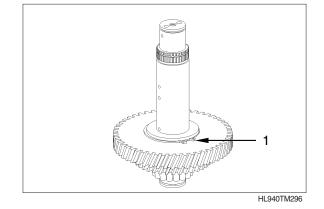
Closing and opening of the clutch must be clearly audible.

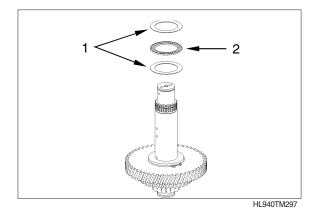

(6) K4 clutch

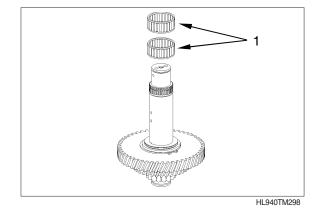
 Heat up bearing inner ring (approx. 120°C).

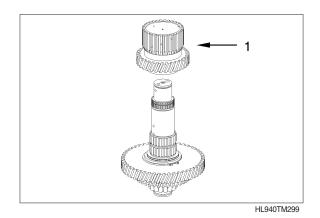


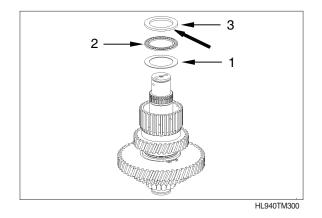
 2 Mount bearing inner ring (1) until contact is obtained.
 Fit rectangular ring 40×2.5 (2).


- $\ensuremath{\,\times\,}$ Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

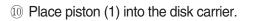

- ③ Undercool shaft (1) (approx. -80°C), heat up gear (2) (approx. +120°C) and mount until contact is obtained.
- * Wear protective gloves.

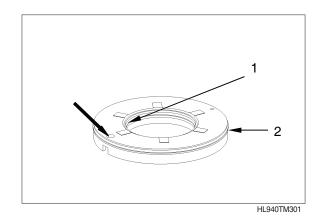

(4) Secure gear by means of retaining ring 80×2.5 - (1).

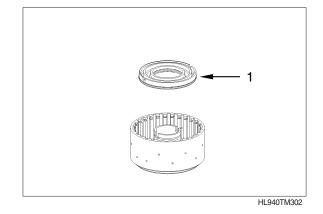

- (5) Mount lower axial washer $50 \times 70 \times 1$ (1), axial needle cage $50 \times 70 \times 3$ (2) and upper axial washer $50 \times 70 \times 1$ (1) and oil it.
- * Upper and lower axial washer are identical.


6 Mount needle cage 50 \times 58 \times 50 (1) and oil it..

⑦ Mount idler gear (1).

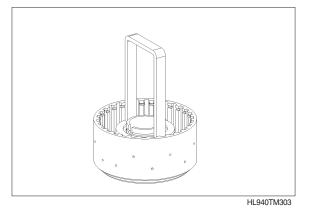

- 8 Mount axial washer 50 \times 70 \times 1 (1), axial needle 50 \times 70 \times 3 cage (2) and running disk 50 \times 70 \times 4(3) and oil it.
- Mount running disk (3) with the chamfer (see arrow) showing to the needle cage.

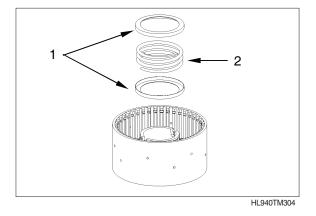

Interpretent in the second second


 $1 = 64 \times 3$ $2 = 120 \times 3$

* Check function of the drain valve (see arrow) - There must be no jamming of the ball.

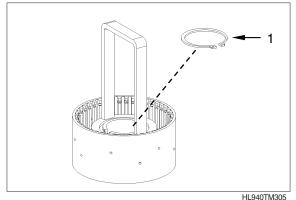
* Observe installation position, see figure.




① Use a hand-operated press to place piston into the disk carrier by means of the assembly aid.

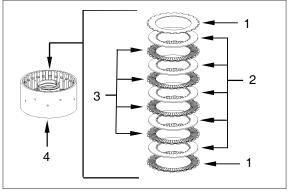
Assembly aid 5

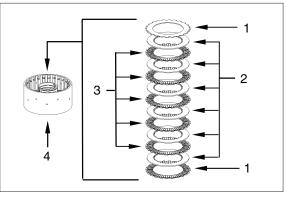
5870 345 088


12 Mount guide rings (1) and compression spring (2).

 Preload pressure spring by means of assembly aid and fix with retaining ring 58×2 (1).

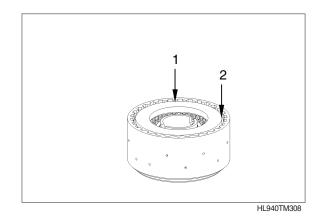
Assembly aid

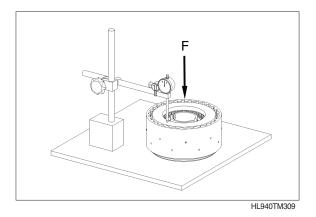

5870 345 088


HL940TM30

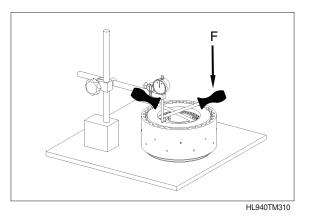
- Different clutches (disc arrangements with relevant disc clearance) can be installed, depending on the parts list version.
- The actually installed clutch and disc arrangement must be taken from the corresponding spare parts list.
- Figure no.: TM306 and TM307 illustrates the different disc arrangements.
- * The spare parts list shall be binding.
- Install outer and inner disks alternately into the disk carrier (4) as personated in TM306.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Inner disks (5 pcs)
 - 3 Outer disks (4 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate. Number of friction surfaces : 10
- Install outer and inner disks alternately into the disk carrier (4) as personated in TM307.
 - 1 Friction disk -coated on one side- (2 pcs)
 - 2 Inner disks (6 pcs)
 - 3 Outer disks (7 pcs)
- * Take care that the uncoated (blank) side of the friction disk (1) is showing towards the piston or end plate.

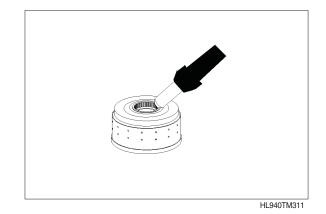
Number of friction surfaces : 12




HL940TM307

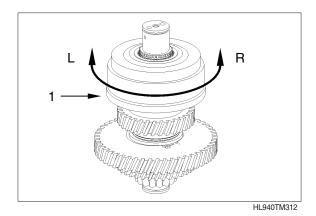
(b) Mount end plate (1) and fix disk package by means of snap ring (2) (e.g. thickness = 2.65 mm / recommended value).

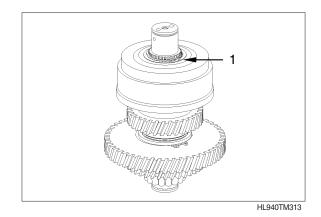



 Press on end plate with F (approx. 100 N = 10 kg) and set dial indicator to "zero".

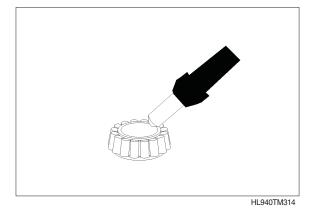
Magnetic stand	5870 200 055
Dial indicator	5870 200 057

- (B) Then press end plate against the snap ring (upwards) and read disk clearance.
- * Disk clearance : 1.15 to 1.45 mm (see TM306)
- % Disk clearance : 1.35 to 1.65 mm (see TM307)
- In case of deviations, the disk clearance must be corrected with an appropriate snap ring (optional thicknesses = 2.1~ 4.2 mm).
- Heat up clutch inner diameter (approx. 120°C).




0 Mount clutch (1) until contact is obtained .

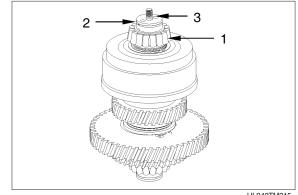
Mount inner disks onto the inner disk carrier by means of short left/right rotations.


* Wear protective gloves.

(2) Secure clutch by means of retaining ring 50×2 (1).

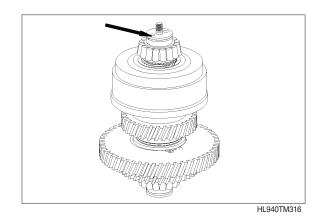
22 Heat up bearing inner ring (approx. 120°C)

③ Mount bearing inner ring (1) until contact is obtained.

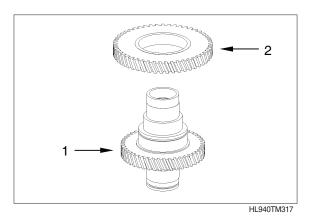

Fit rectangular ring 40 \times 2.5 (2).

Wear protective gloves.

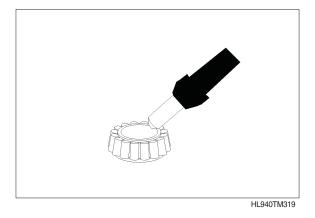
Adjust bearing inner ring after cooling-down.


Mount stud bolt (3).

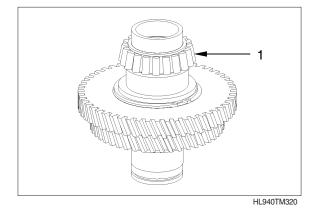
 \cdot Tightening torque (M10 /8.8 \times 16) : 1.73 kgf m (12.6 lbf ft)


* Check closing and opening of the clutch by means of compressed air at the hole (see arrow).

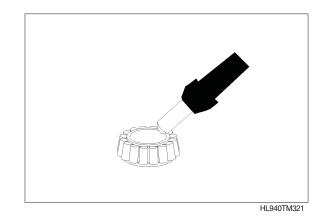
Closing and opening of the clutch must be clearly audible.

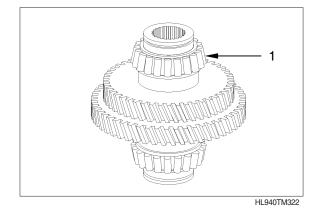

(7) Input shaft

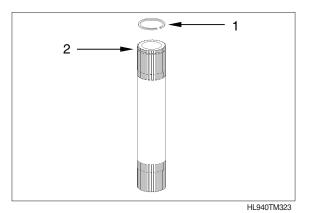
- Undercool input shaft (1) (approx. -80°C), heat up drive gear (2) (approx. +120°C) and mount until contact is obtained.
- * Wear protective gloves.
- (2) Secure drive gear by means of retaining ring 90×3 (1).

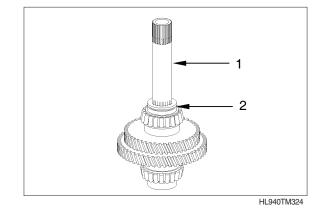


I HL940TM318

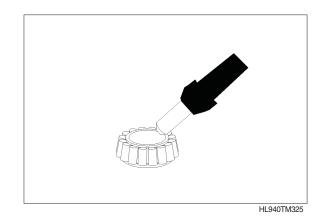

③ Heat up bearing inner ring (approx. 120°C)


- ④ Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

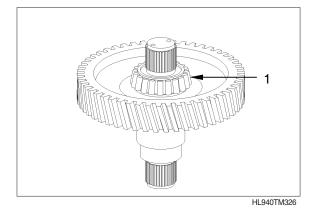

(5) Heat up bearing inner ring (approx. 120°C)


- ⑥ Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

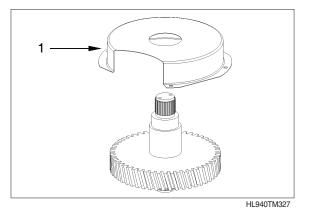
⑦ Install snap ring (1) into the annular groove (2) of the turbine shaft.

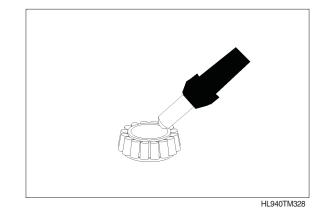


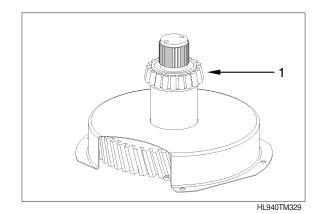
- ⑧ Mount turbine shaft (1) until the snap ring engages into the input shaft groove.
- * Turbine shaft is axially fixed.
- Snap in and interlock rectangular ring 60×3 (2).



(8) Output shaft


① Heat up bearing inner ring (approx. 120°C).


- ② Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.


3 Mount screen sheet (1).

 ④ Heat up bearing inner ring (approx. 120°C).

- (5) Mount bearing inner ring (1) until contact is obtained.
- * Wear protective gloves.
- * Adjust bearing inner ring after coolingdown.

3-175

- 9) INSTALLATION OF INPUT SHAFT, OUTPUT SHAFT, PUMP SHAFT (POWER-TAKEOFF SHAFT) AND CLUTCHES
- If the suction tube (1) in the housing front part is to be replaced, it is imperative to use the special tool (rolling tool) for assembly. Then fix the tube with cylindrical screw – (2).
- It is always necessary to use new cylindrical screws.
 - \cdot Tightening torque (M8/8.8 \times 12) :

2.34 kgf · m (17.0 lbf · ft)

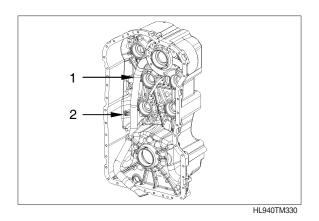
Rolling tool	5870 600 003
Lubricant	5870 451 006

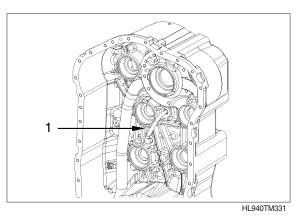
- * The spare parts service supplies the lubricating oil tube (1) only as a complete package with the housing front part.
- * Single parts delivery upon request only.
- * Assembly is only possible with the special tool.

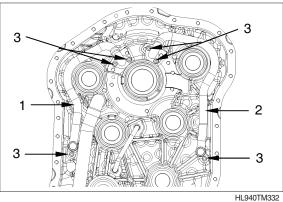
Rolling tool	5870 600 005
Lubricant	5870 451 006

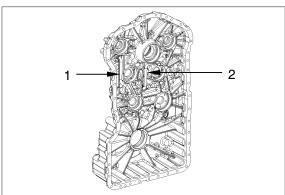
(2) Mount O-rings 22×3 into the annular groove of the oil tubes (1 and 2) and oil them.

Then insert tubes into the housing front part, oil cylindrical screws (3) and fix them.


It is always necessary to use new cylindrical screws.


 \cdot Tightening torque (M8/8.8 \times 12) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)


- * The spare parts service supplies the lubricating oil tubes (1 and 2) only as a complete package with the housing rear part.
- * Single parts delivery upon request only.
- * Assembly is only possible with the special tool.


Rolling tool Lubricant

5870 600 006 5870 451 006

HL940TM333

(2) Insert all bearing outer rings into the bearing holes of both housing parts.

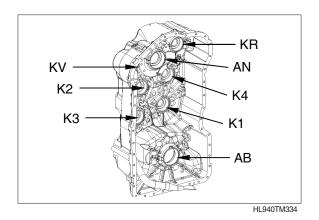
Housing front part

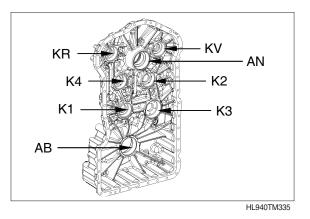
- AN Input
- AB Output
- KV Forward clutch
- KR Reverse clutch
- K1 1st gear clutch
- K2 2nd gear clutch
- K3 3rd gear clutch
- K4 4th gear clutch

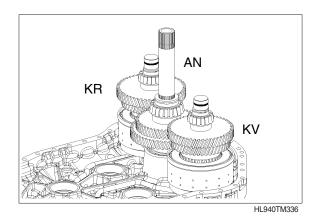
* Installation position see TM334 and TM335.

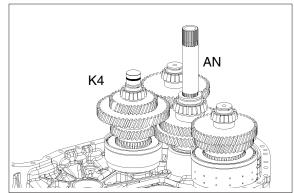
(3) Housing rear part

See TM333.

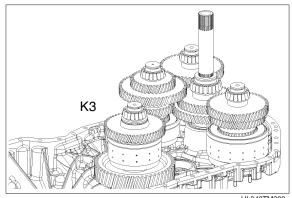

- % Place bearing outer rings into the bearing holes using assembly grease.
- If the tapered roller bearings of clutches, input and output are not replaced, it is imperative to ensure the previous pairing (bearing inner ring/bearing outer ring).
- Due to the installation conditions, the installation of single clutches without using the special tool is not possible.
- * Risk of injury.


Install clutches by means of housing rear part (TM343 to TM342).


Housing rear part will be removed again later.

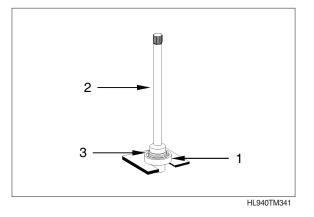

Place KR clutch, AN input shaft and KV clutch into the housing rear part at the same time.

(4) Slightly lift drive gear and position K4 clutch.



(5) Mount K3 clutch.

(6) Position K2 clutch.


HL940TM338

- <image>
- (7) Slightly lift K4 clutch and position K1 clutch.

(8) Press ball bearing (1) onto the pump shaft(2) until contact is obtained.

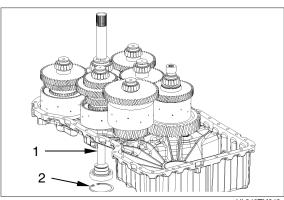
Mount rectangular ring 50 \times 2.5 (3).

Grease and centrically align rectangular ring.

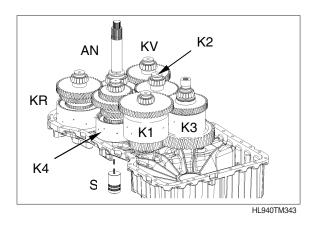
(9) Mount pump shaft (2) until contact is obtained.

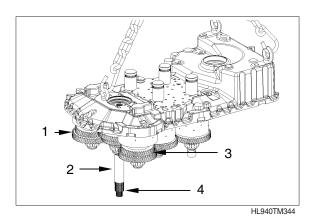
Fix pump shaft by means of retaining ring 85×3 (2).

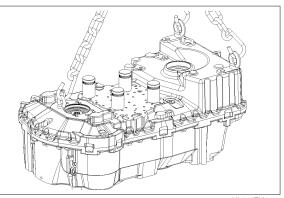
(10) The figure right shows the installation position of the individual clutches in the housing rear part one more time.Fix clutches K1, K2, K3 and K4 by using a handle.

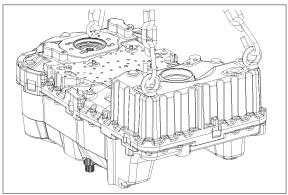

Handle 5870 260 010

% Clutches KV, KR and input shaft (2) are only fixed by the gear chain.


Check all rectangular rings, grease and align them centrically.


- (11) Pivot housing rear part 180° by using a lifting device.
 - 1 Clutch KV
 - 2 Input shaft
 - 3 Clutch KR
 - 4 Pump shaft
- % Clutch KV, KR and input shaft are only fixed by the gear chain.
- * Attention must be paid that the non-fixed components of the gear chain do not get loose.
- (12) Use the lifting device to bring the housing rear part into contact position with the housing front part, by cautiously assembling the clutches.


Then remove handles.



(13) Remove housing rear part again.

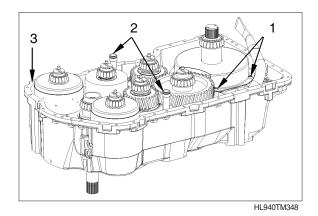
HL940TM346

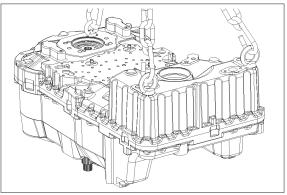
(14) Put on screen sheet (1).

Install preassembled output shaft (2).

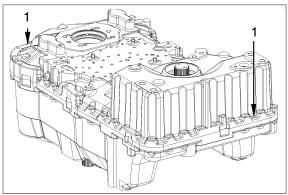
- (15) Oil cylindrical screws (1) and use them to fix screen sheet .

 \cdot Tightening torque (M8/8.8 \times 12) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)


% It is always necessary to use new cylindrical screws.


Mount O-rings 22×3 (2) into the annular groove of the oil tubes and oil them.

Mount all rectangular rings, grease and align them centrally.


Wet mounting face (3) with sealing agent loctite (type No. 574).

- (16) Carefully bring the housing front part into contact position with the housing rear part by using the lifting device.
- Pay attention that both oil tubes are aligned with the holes in the housing rear part.

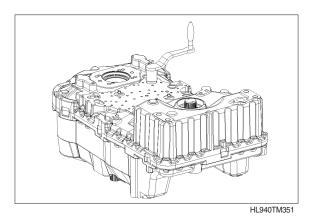
(17) Fit both cylindrical pins 10×24 (1) centrically to the mounting face.

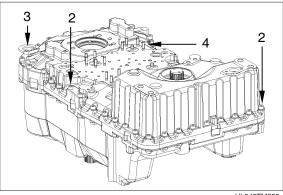
HL940TM350

(18) Checking of clearance of the gear drive train

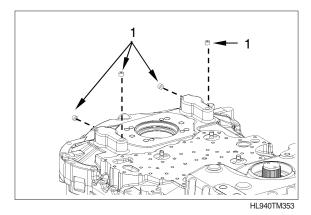
Position driving element (S) and rotate KV clutch shaft.

If you notice an interference of the movable parts (e.g. on the screen sheet or on the oil tubes), you must correct this fault.

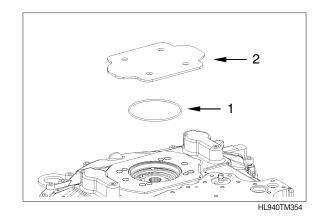

Do this step on all clutch shafts.

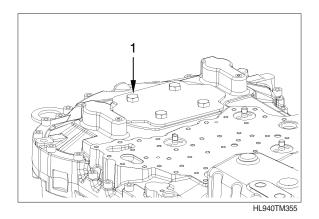

Driving element	5870 345 089
Crank handle	5870 280 007

- (19) Fix housing front and rear part by means of cylindrical screws (1 and 2).
 - Tightening torque (M10/8.8×60) : 4.69 kgf · m (34.0 lbf · ft)
 Tightening torque (M10/8.8×40) : 4.69 kgf · m (34.0 lbf · ft)


Mount fixing plate (3) Mount stud bolts (4).

- Wet screw-in thread with loctite (type No. 243).
 - \cdot Tightening torque (M8/10.9 \times 25) : 1.53 kgf \cdot m (11.1 lbf \cdot ft)
- (20) The screw plugs (1) must be mounted with a hydraulic pneumatic pressing tool.
- In case of damage the premounted transmission housing rear part should / must be fully replaced.

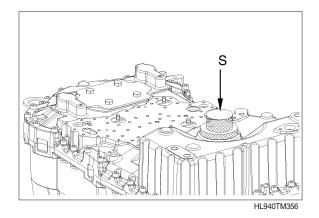


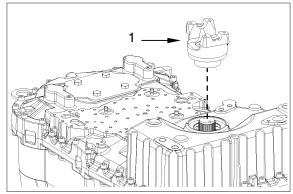


10) A S S E M B L Y – O U T P U T S A N D CLOSURE PARTS PUMP SHAFT (PTO-SHAFT)

- (1) Closure parts pump shaft (PTO-shaft)
- Insert O-ring 130×3 (1) into the hole of the transmission housing and grease it. Bring cover plate (2) into contact position.
- ② Fix cover plate with cylindrical screws (1).
 - \cdot Tightening torque (M16/8.8 \times 20) : 4.69 kgf \cdot m (34.0 lbf \cdot ft)

(2) Output flange on output side without parking brake


① Use driver (S) to mount shaft seal $70 \times 100 \times 10$, with the sealing lip showing to the oil sump.


Driver 5870 048 057

- We use of the specified driver (S) ensures the exact installation position.
- Fill space between sealing lip and dust lip with grease.

Wet outer diameter (rubber-coated) with spirit.

② Mount output flange (1) until contact is obtained.

HL940TM357

 ③ Insert O-ring 38×4 into the space between output flange and shaft.
 Fix output flange (2) by means of washer (1) and hexagon screws (3).
 Oil house per server hofers, the

Oil hexagon screws before the assembly.

- \cdot Tightening torque (M8/10.9 \times 25) : 3.47 kgf \cdot m (25.1 lbf \cdot ft)
- % It is always necessary to use new hexagon screws.

(3) Output flange output side with brake

① Use driver (S) to mount shaft seal $70 \times 100 \times 10$, with the sealing lip showing to the oil sump.

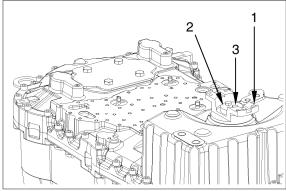
Driver 5870 048 057

- We use of the specified driver (S) ensures the exact installation position.
- Fill space between sealing lip and dust lip with grease.
- Wet outer diameter (rubber-coated) with spirit.
- ② Press screen sheet (1) onto the input flange (2).

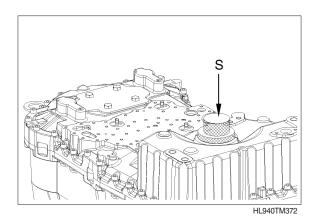
Mount output flange (2) until contact is obtained.

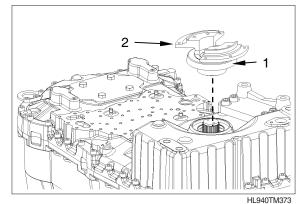
 ③ Insert O-ring 48×4 into the space between output flange and shaft.
 Fix output flange (1) by means of washer

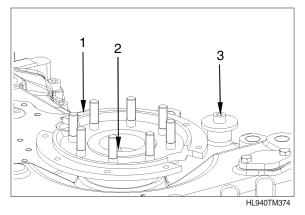
(2) and hexagon screws.


Oil hexagon screws before the assembly.

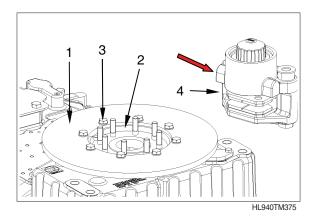
 \cdot Tightening torque (M10/8.8 \times 30) : 4.69 kgf \cdot m (34.0 lbf \cdot ft)

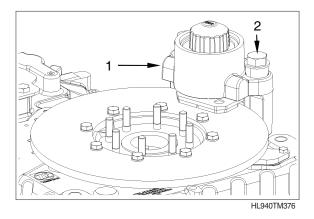

It is always necessary to use new hexagon screws.


Mount cylindrical screw with washer (3) for stop of the parking brake setting screw.

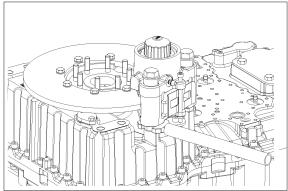

 \cdot Tightening torque (M10/8.8 \times 16) : 4.90 kgf \cdot m (35.5 lbf \cdot ft)

HL940TM358

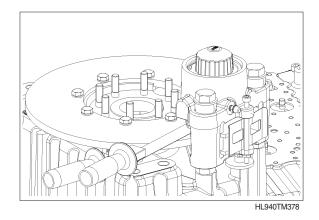

 ④ Fix brake disk (1) at output flange (2) by means of hexagon screws (3) and washers.


 \cdot Tightening torque (M10/10.9 \times 25) : 6.94 kgf \cdot m (50.3 lbf \cdot ft)

Connect HP pump on port (see arrow) and apply app. 80 bar pressure to parking brake (4) and bring it in contact position.


HP hand-operated pump5870 287 007MINIMESS coupling5870 950 101

- (5) Fix parking brake (1) on transmission housing using the hexagon screw - guide pin (2).
 - \cdot Tightening torque (M20 \times 1.5) : 6.12 kgf \cdot m (44.4 lbf \cdot ft)


- 6 Fix hexagon nut on brake caliper using the open end wrench insert.
 - \cdot Tightening torque (M20 \times 1.5) : 19.9 kgf \cdot m (143.8 lbf \cdot ft)

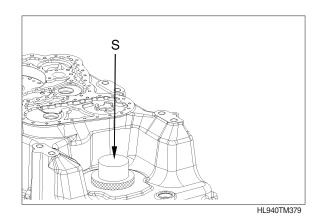
HL940TM377

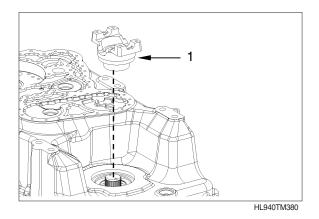
⑦ Insert setting gauge on both sides between base disk and brake disk and hold in its position.

 $\label{eq:clearance: 0.5-1.5 mm} \begin{array}{c} \text{Nom. clearance: 0.5-1.5 mm} \\ \text{Nom. clearance: 1.0 mm} \end{array}$

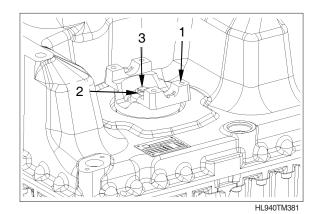
(4) Output flange on converter side

Driver

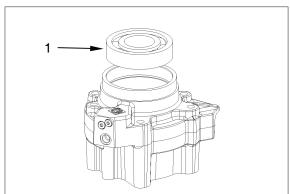

① Use driver (S) to mount shaft seal, with the sealing lip showing to the oil sump.


5870 048 057

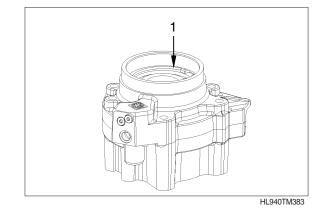
- We use of the specified driver (S) ensures the exact installation position.
- Fill space between sealing lip and dust lip with grease.


Wet outer diameter (rubber-coated) with spirit.

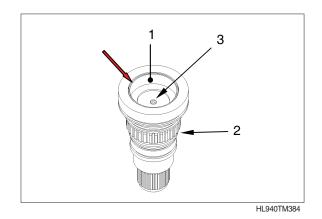
② Mount output flange (1) until contact is obtained.



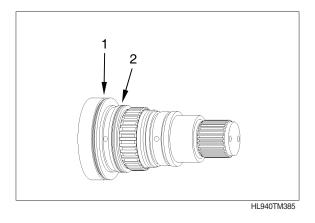
- ③ Insert O-ring 38×4 into the space between output flange and shaft.
 Fix output flange (1) by means of washer (2) and hexagon screws (3).
 Oil hexagon screws before the assembly.
 - \cdot Tightening torque (M8/10.9 \times 25) : 3.47 kgf \cdot m (25.1 lbf \cdot ft)
- % It is always necessary to use new hexagon screws.

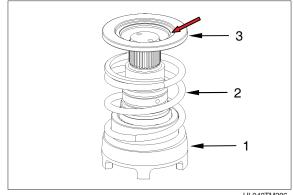


- (5) Output flange on converter side (with axle disconnection)
- ① Press ball bearing $55 \times 120 \times 29$ (1) to contact position into the housing hole.

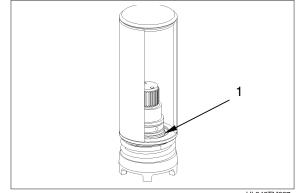


HL940TM382

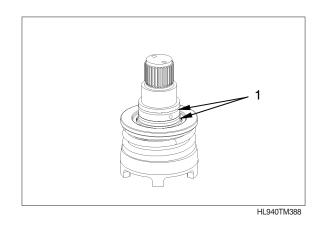

 \odot Fix ball bearing by means of retaining ring 120 \times 4 (1).


- ③ Flush-mount bearing bush (1) in the hole of the output shaft (2) - see arrow-.
 Install orifice (3).
 - \cdot Tightening torque : 1.53 kgf \cdot m (11.1 lbf \cdot ft)

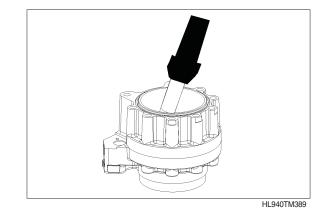
 ④ Insert both O-rings 90×3 (1) and O-rings 72×3 (2) free of twists into annular grooves of the output shaft. Then apply oil onto O-rings.


- Mount sliding sleeve (1) until contact is obtained, and position compression spring (2) and end plate (3).
- * Pay attention to installation position of end plate, see arrow.

HL940TM386


- 6 Carefully preload compression spring and fix single parts by snap ring (1).
- ※ Pay attention to an exact contact of the snap ring in the groove.

Press bush 5870 506 166

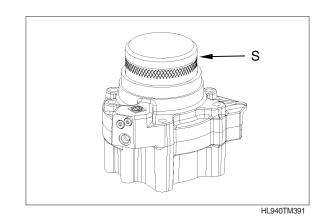


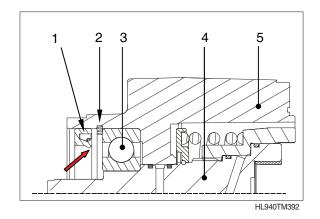
HL940TM387


⑦ Snap in and interlock both rectangular rings 65×60.7×3.5 (1).
 Then apply grease on rectangular rings and align centrically.

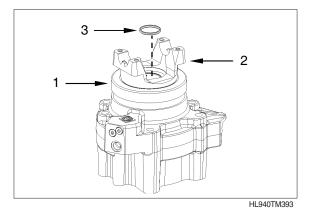
℁ Heat up ball bearing (approx. 120°C).

⑧ Mount the preassembled output shaft (1) until contact is obtained.

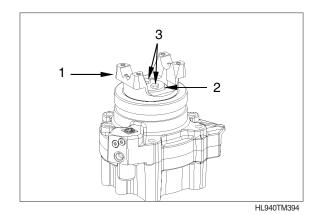


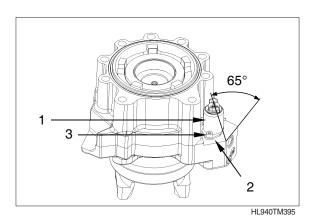

HL940TM390

- (9) Fit shaft seal $90 \times 120 \times 13$, with the sealing lip showing towards the oil sump.
- W Use the specified driver tool (S), to obtain the exact installation position.
 Installation position shaft seal see TM392.


Wet outer diameter with Loctite sealing agent (product no. : 574).

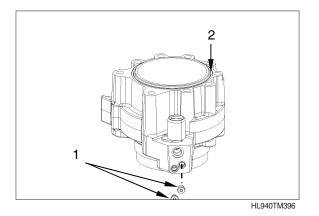
- 1 Shaft seal $90 \times 120 \times 13$
- 2 Retaining ring 120×4
- 3 Ball bearing $55 \times 120 \times 29$
- 4 Output shaft cpl.
- 5 Housing





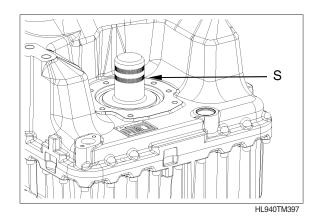
- Press screen sheet (1) onto output flange (2) in a flush position.
 Mount output flange (2) and insert O-ring 38x4 (3) into the space of output flange and output shaft.
- Assembly is facilitated by heating the output flange to approx. 80°C.
 Wear protective gloves.

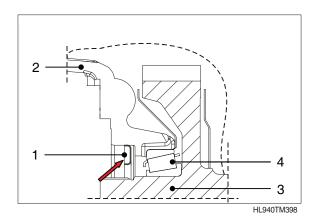
- Fix output flange (1) by means of washer (2) and hexagon screws M8×25 (3).
 Oil hexagon screws before the assembly.
 - \cdot Tightening torque (M8/10.9 \times 25) : 3.47 kgf \cdot m (25.1 lbf \cdot ft)
- It is always necessary to use new hexagon screws.
- Apply oil onto O-rings. Install solenoid valve (1) and fix it by holder (2) and cylinder screw M6x12 (3).
 - \cdot Tightening torque (M6/8.8 \times 12) : 0.97 kgf \cdot m (7.03 lbf \cdot ft)
- % Pay attention to solenoid valve installation position, see figure.



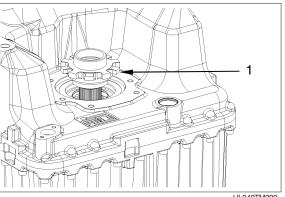
- (3) Provide both screw plugs M10×1 with O-rings 8×1.5 (1) and install them.
 - · Tightening torque :

0.61 kgf \cdot m (4.44 lbf \cdot ft)


Insert round sealing ring 146×2.65 (2) into annular groove with assembly grease.

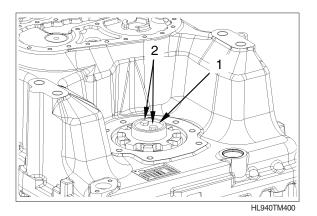

- 14 Fit screen.
- We use the specified driver tool (S), to obtain the exact installation position.
- * Installation position screen see TM398.

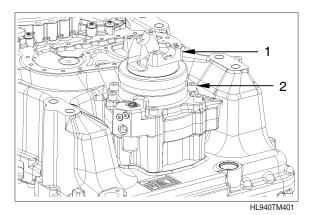
Driver tool


AA00 238 994

- 1 Screen
- 2 Gearbox housing
- 3 Output shaft
- 4 Roller bearing

- (5) Heat flange (1) (approx. 80°C) and mount until contact is obtained.
- * Wear protective gloves.

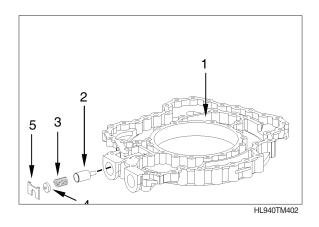

HL940TM399

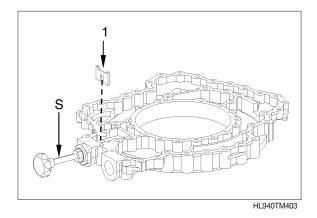

(b) Fix flange by means of the washer (1) provided and hexagon screws $M8 \times 25$ (2).

Oil hexagon screws before the assembly.

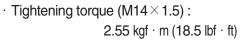
 \cdot Tightening torque (M8/10.9 \times 25) : 3.47 kgf \cdot m (25.1 lbf \cdot ft)

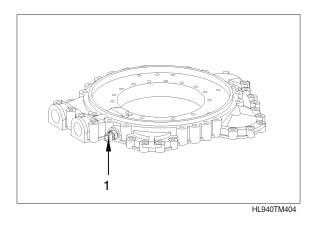
- % It is always necessary to use new hexagon screws.
- Insert preassembled axle disconnection
 (1) and fix by means of cylinder screws
 M12×140 (2).
 - \cdot Tightening torque (M12/8.8 \times 140) : 8.06 kgf \cdot m (58.5 lbf \cdot ft)


11) REASSEMBLY:

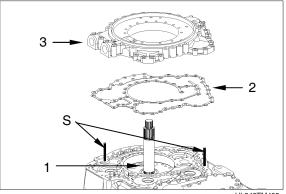

Engine connection, oil pressure pump, converter back-pressure valve and temperature sensor (measuring point "63" after the converter).

(1) Converter back-pressure valve

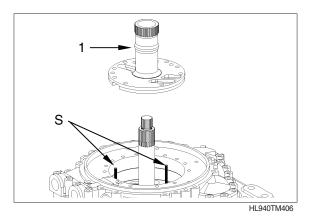

- ① The figure shows the single parts of the converter back-pressure valve.
 - 1 Oil feed housing
 - 2 Piston
 - 3 Compression spring
 - 4 Pressure plate
 - 5 Locking plate
- Install pressure plate (4), with the pin (ø 6 mm) showing to the locking plate (5).
- ② Assemble single parts, preload them with assembly aid (S) and fix them by means of locking plate (1).


Assembly aid 5870 345 107

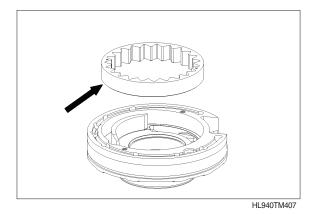
- (3) Mount temperature sensor (1) with new O-ring 11×2 .
 - · Tightening torque : 2.55 kgf · m (18.5 lbf · ft)
- % Version without temperature sensor: Fit a screw plug (1) with new O-ring 11 × 2.

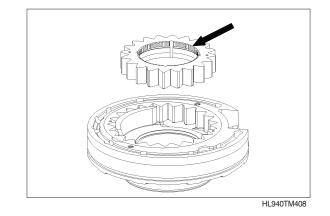

(2) Oil pressure pump

- Insert pressure relief valve (1) into the housing hole until contact is obtained.
 Mount two adjusting screws (S) and place gasket (2) and oil feed housing (3).
- * Use assembly grease.


Adjusting screws (M8) 5870 204 011

- * The pressure relief valve is not mounted on all versions.
- ② Install two adjusting screws (S) and mount stator shaft (1).
- % Pay attention to radial installation position.


Adjusting screws (M10) 5870 204 007



- * In case of wear marks in the pump housing or on the control disk, the pump assy. must be replaced.
- 3 Install outer rotor.
- % Chamfer (see arrow) to show downwards.

- 4 Install inner rotor.
- * Teeth (see arrow) to show upwards.

- (5) Place control disk and fix it radially by means of two cylindrical screws $M6 \times 12$ (1).
- ** Do not tighten the cylindrical screws just turn them in until contact is obtained and then turn them back by approx. ¹/₂ rotation.

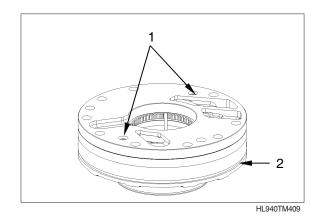
Pay attention to the installation position of the control disk, see figure.

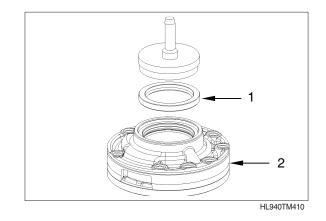
Place O-ring 182 \times 3 (2) into the annular groove and oil it.

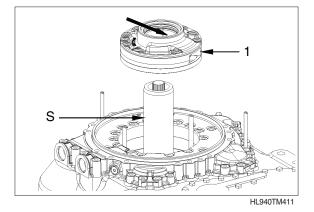
- 6 With the sealing lip showing downwards, carefully insert the shaft seal (1) into the pump housing (2) until contact is obtained.
- Wet outer diameter of shaft seal with spirit.

Driver	5870 055 070
Handle	5870 260 002

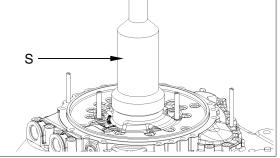
- % Oil sliding bearing (see arrow) before the assembly.
- \bigcirc Mount inner installer (S) onto the stator shaft.


Mount preassembled transmission pump (1).


% Pay attention to radial installation position.

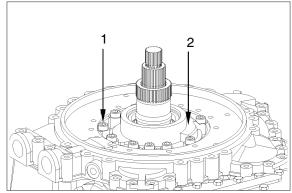

Inner installer \rightarrow see TM412.

⑧ Mount preassembled pump with driver(S) until contact is obtained.

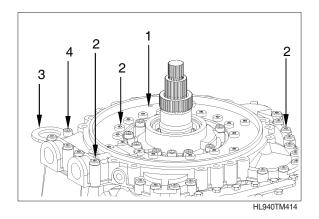

Assembly fixture	5870 345 126
(Inner installer and driver)	

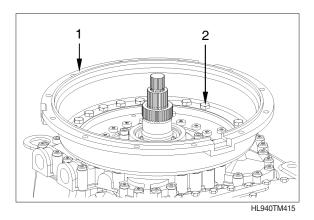
0

HL940TM412

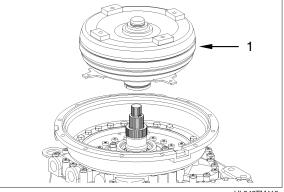

- (9) Fit O-rings 9.5×1.6 to the cylindrical screws 10×75 .
- * Grease O-rings.

Fix transmission pump (2) by means of cylindrical screws (1).


- \cdot Tightening torque (10/8.8 \times 75) : 4.67 kgf \cdot m (34.0 lbf \cdot ft)
- Fix oil feed housing (1) equally by means of Torx screws (2).
 - \cdot Tightening torque (M8/10.9 \times 30) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)
 - \cdot Tightening torque (M8/10.9 \times 45) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)
 - \cdot Tightening torque (M8/10.9 \times 60) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)

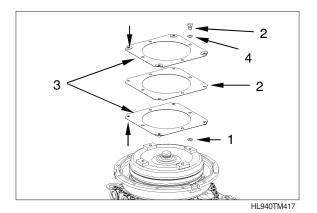

Fasten fixing plate (3) by means of cylindrical screws (4).

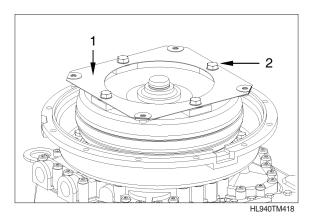
- \cdot Tightening torque (M8/8.8 \times 40) : 3.47 kgf \cdot m (25.1 lbf \cdot ft)
- Fix converter bell housing (1) by means of hexagon screws (2).
 - \cdot Tightening torque (M10/10.9 \times 65) : 6.63 kgf \cdot m (48.1 lbf \cdot ft)



- (3) Engine connection (direct mount)
- Position converter (1) by means of lifting device until contact is obtained.

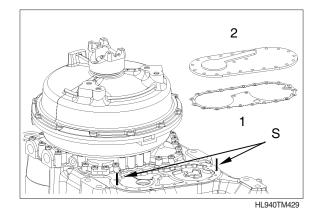
Eye bolts assortment 5870 204 002

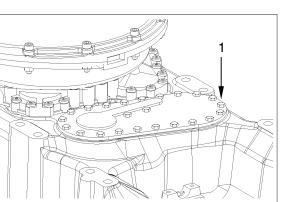



HL940TM416

- Position 1 washer/each / thickness = 1.0 mm (4EA) (1) onto the flex plate mounting webs (4EA).
 Place flex plates (2 and 3).
- ※ Ay attention to the installation position. Spot-welded reinforcing disks of the flex plate (3) to be arranged towards the outside - see arrows.

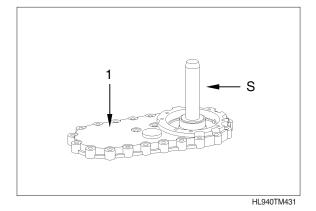
Mount washer (4) onto the hexagon screw M10x16 (5) and fix flex plate.


- Wet threads of hexagon screws with loctite (Type No. 262).
- ③ Fix flex plate (1) by means of hexagon screws (2).
- Secure hexagon screws with loctite (type No. 262).
 - \cdot Tightening torque (M12/10.9 \times 18) : 11.7 kgf \cdot m (85.1 lbf \cdot ft)

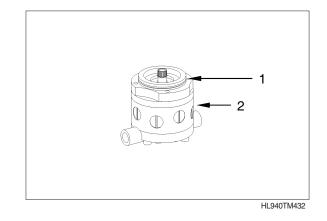


12) REASSEMBLY - EMERGENCY STEERING PUMP

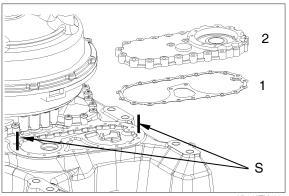
- (1) Version without emergency steering pump
- Fit adjusting screws (S) and assemble seal (1) and cover (2).
- ② Fix cover by means of hexagon screws (1).
 - \cdot Tightening torque (M8/8.8 \times 18) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)



HL940TM430

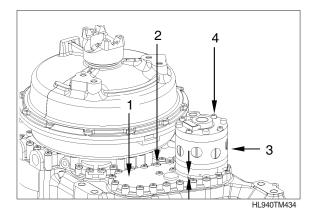

(2) Version with emergency steering pump

 Press sliding bearing into the cover (1) in alignment with the plane face.


Driver 5870 048 080

② Place O-ring 100×3 (1) into the annular groove of the piston pump (2) and grease it.

③ Fit adjusting screws (S) and assemble seal (1) and cover (2).



HL940TM433

- ④ Fix cover (1) by means of Torx screws(2).
 - \cdot Tightening torque (M8/10.9 \times 30) : 2.35 kgf \cdot m (17 lbf \cdot ft)

Mount emergency steering pump (3) and fix it by means of cylindrical screws (4).

- \cdot Tightening torque (M8/8 \times 135) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)
- * Pay attention to radial installation position, see markings done during disassembly (arrows).

13) REASSEMBLY:

(1) Inductive sensor, Hall sensor, breather, oil filler and oil drain plug

① Mount inductive sensors (1, 2 and 3) with new O-rings 15×2 .

- 1 Inductive sensor engine speed
- 2 Inductive sensor speed/central gear chain
- 3 Inductive sensor turbine speed
- · Tightening torque :

3.06 kgf · m (22.2 lbf · ft)

Mount breather (4).

- \cdot Tightening torque (3) : 1.22 kgf \cdot m (8.88 lbf \cdot ft)
- ② Mount speed sensor (1) with O-ring 15.54×2.62 and fix it by means of cylindrical screw (2).

1 = speed sensor (Hall sensor) - output speed

· Tightening torque (M8/8.8 \times 16) :

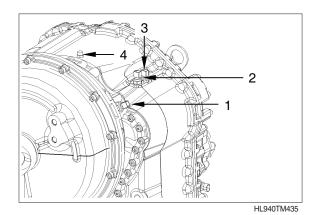
2.35 kgf \cdot m (17 lbf \cdot ft)

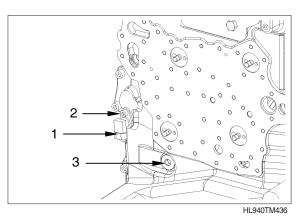
Mount screw plug M26 \times 1.5 with O-ring 23 \times 2

Tightening torque :

8.16 kgf \cdot m (59.2 lbf \cdot ft)

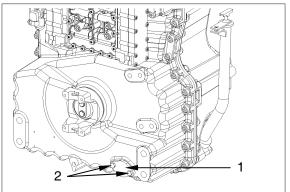
(3) Mount oil drain plug with O-ring 35×2 (1).


 \cdot Tightening torque (M38 \times 1.5) : $8.16 \text{ kgf} \cdot \text{m} \text{ (59.2 lbf} \cdot \text{ft)}$

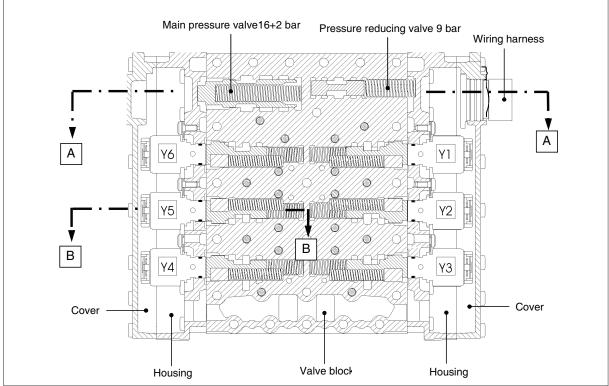

Bring oil level tube (2) with seal into contact position with the housing front part and fix it by means of hexagon screws (3).

 \cdot Tightening torque (M8/8.8 \times 50) : 3.47 kgf \cdot m (25.1 lbf \cdot ft)

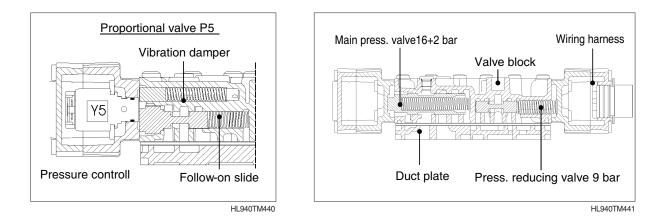
Fasten dipstick (4) in oil level tube. Fix identification plate (5) to the housing front part.


※ Use loctite (type No. MS 9360).

- ④ Bring cover (1) with seal into contact position with the housing front part and fix it by means of hexagon screws (2).
 - \cdot Tightening torque (M8/8.8 \times 18) : 2.34 kgf \cdot m (17.0 lbf \cdot ft)

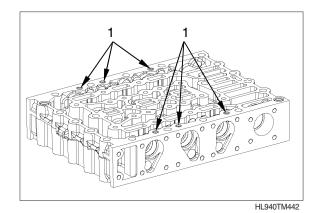


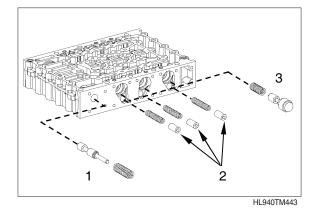
HL940TM438

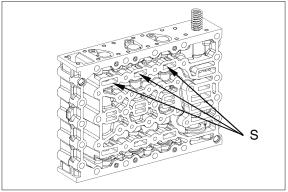

14) REASSEMBLY

Electro-hydraulic control with proportional valves:

* The following sketches show the sectional views of the electro-hydraulic control.

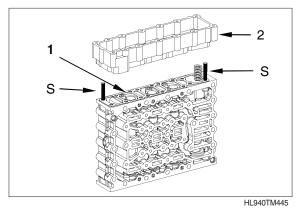



HL940TM439

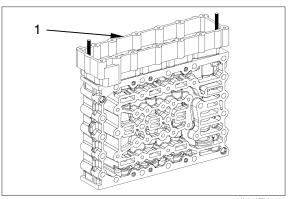


(1) Fitting of electric control

- All single parts are to be checked for damage and replaced, if required.
 Ensure free travel of the moving parts in the valve block prior to installation.
 Pistons can be exchanged individually.
 Prior to the installation, oil.
- With the concave side showing upwards, insert orifice (1) until contact is obtained.
- * See arrows for installation position.
- ② The opposite figure shows the following single parts :
 - 1 Pressure reducing valve (1EA, piston and compr. spring)
 - 2 Vibration damper (3EA, piston and compr. spring
 - 3 Follow-on slide (3EA, piston and compr. spring)
- 3 Install the single parts acc. to TM443.
- Preload compression springs of the follow-on slides and preliminarily fix pistons by means of cylindrical pins Ø 5.0 mm (assembly aid), see arrows (S).

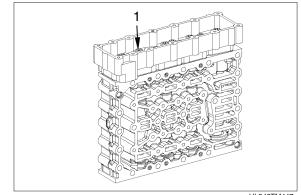


HL940TM444


4 Fit two adjusting screws.

Mount seal (1) and housing (2). Then position housing equally by means of adjusting screws until contact is obtained.

Adjusting screws 5870 204 036


(5) Bring housing (1) into contact position by means of the Torx screws. This will preload the pistons, and you can remove the cylindrical pins (assembly aid).

HL940TM446

- 6 Fix housing by means of Torx screws (1).
 - \cdot Tightening torque (M5/10.9 \times 30) : 0.56 kgf \cdot m (4.07 lbf \cdot ft)

Reducing adapter	5870 656 056
Socket wrench TX-27	5873 042 002

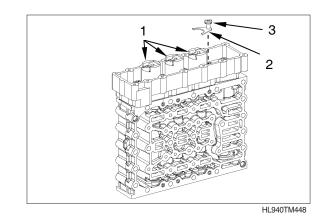
HL940TM447

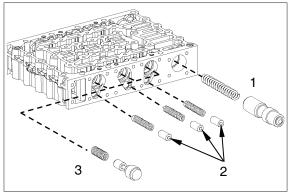
- ⑦ Mount pressure controllers with O-ring 13.5×2 (1) and fasten them by means of fixing plates (2) and Torx screws (3).
- Install fixing plate, with the claw showing downwards.

Pay attention to the radial installation position of pressure controllers, see figure.

· Tightening torque (M5/8.8 \times 12) :

0.56 kgf \cdot m (4.07 lbf \cdot ft)


Reducing adapter	5870 656 056
Socket wrench TX-27	5873 042 002


Preassemble the opposite side

- 8 The figure on the left shows the following single parts:
 - 1 Main pressure valve

(1EA, Piston a. compr.spring)

- 2 Vibration damper (3EA, Piston a. compr.spring)
- 3 Follow-on slide (3EA, Piston a. compr.spring)

- (9) Install the single parts acc. to TM449.
- Preload the compression springs of the follow-on slides and fasten the pistons preliminarily by means of cylindrical pins (S) Ø 5.0 mm (assembly aid), see arrows (S).

Install two adjusting screws.

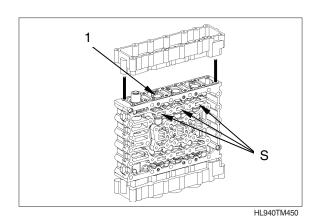
Adjusting screws M5 5870 204 036

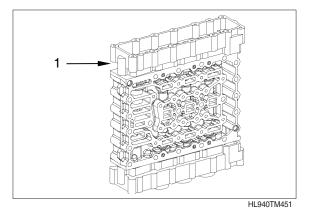
Assemble flat gasket (1) and housing cover. Then place the housing cover by means of adjusting screws equally until contact.

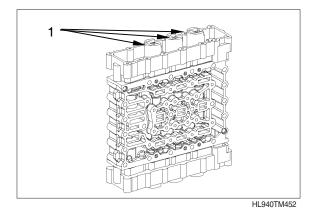
 Preload the pistons with Torx screws and remove the cylinderical pins (assembly aid) again.

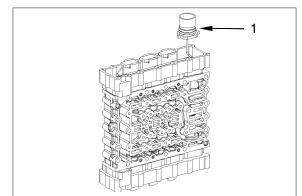
Then fasten the housing cover by means of Torx screws (1).

 \cdot Tightening torque (M5/10.9 \times 30) : 0.56 kgf \cdot m (4.07 lbf \cdot ft)


Adjusting screws	5870 204 036
Reducer	5870 656 056
Socket spanner TX-27	5873 042 002

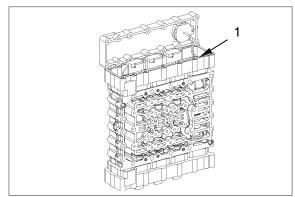

- Mount the pressure regulators with O-ring 13.5×2 (1) and fasten them by means of fixing plates and cap screws.
- Install the fixing plate with the neck showing downwards.
 Observe radial installation position of the


pressure regulators, see figure.

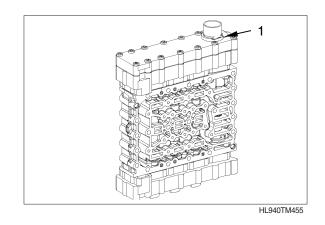

 \cdot Tightening torque (M5/8.8 \times 12) : 0.56 kgf \cdot m (4.07 lbf \cdot ft)

- Assemble the wiring harness (1) and connect the pressure regulators (6EA).
- See TM439 for installation position of pressure regulators.
- ※ Pay attention to the installation position of the wiring harness.

13 Put on the flat gasket (1).

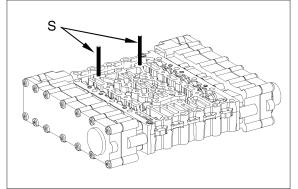

Assemble the plug socket with the slot showing to the lug of the cover until contact.

Fasten the cover by means of cap screws.

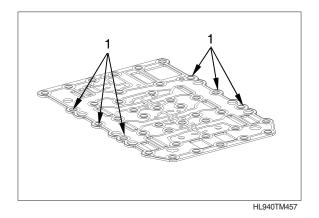

 \cdot Tightening torque (M5/10.9 \times 30) : 0.56 kgf \cdot m (4.07 lbf \cdot ft)

Reducer	5870 656 056
Socket spanner TX-27	5873 042 002

- If it is the wiring harness by means of retaining clamp (1).
- * Install the opposite cover.

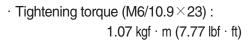


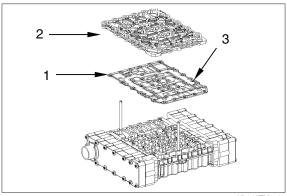
HL940TM454


 ${\rm (15)}$ Install two adjusting screws.

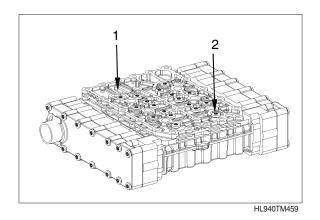
Adjusting screws	5870 204 063
------------------	--------------

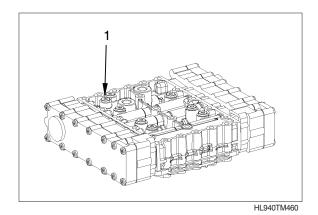
HL940TM456

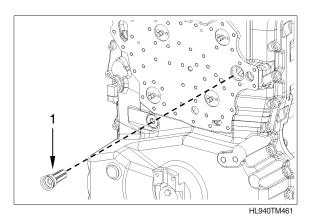

- (6) Flush-mount screens (1) into the holes of the sealing plate, see arrows.
- * Pay attention to the installation position screens to show upwards (towards the duct plate).


- (7) Put on sealing plate (1) and duct plate (2).
- * Screens (3) to show upwards.
- It is not permitted to reassemble the seal plate after opening the threaded joint shift unit/duct plate.

In case of repair it is always necessary to mount a new seal plate.


B Place duct plate (1) and fix it equally by means of Torx screws (2).





- (1) Provide the screw plugs M10×1 with O-rings 8×1.5 (1) and install them.
 - · Tightening torque :

0.61 kgf \cdot m (4.44 lbf \cdot ft)

② Insert converter safety valve (1) into the housing hole until contact is obtained. 2 Mount stud bolts (1).

- Wet screw-in thread with loctite (type No. 243).
 - · Tightening torque (M8/10.9 \times 25) :

1.53 kgf · m (11.1 lbf · ft)

Place seal (2) and duct plate (3) at the housing rear part until contact is obtained.

- * Use assembly grease.
- ② Fix duct plate (1) by means of Torx screws (2) and hexagon nuts (3).
 - · Tightening torque (M8/10.9 \times 30) :

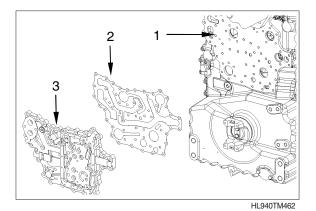
2.34 kgf · m (17.0 lbf · ft)

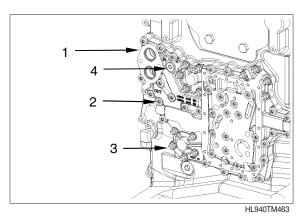
Tightening torque (M8) :

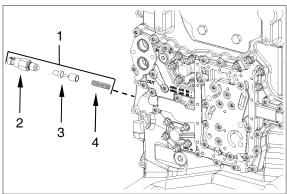
2.34 kgf · m (17.0 lbf · ft)

Mount screw plug (4) with new O-ring 13 \times 2.

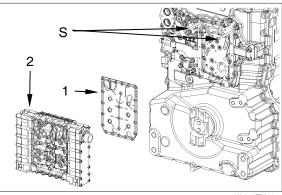
- \cdot Tightening torque (M16 \times 1.5) : 3.06 kgf \cdot m (22.2 lbf \cdot ft)
- Socket wrench TX-40 5873 042 004
- Mount compression spring (4), piston (3) and switch (2) with new O-ring 13×2 .
 - 1 Filter differential pressure valve
 - 2 Switch with O-ring
 - 3 Piston
 - 4 Compression spring
 - · Tightening torque :

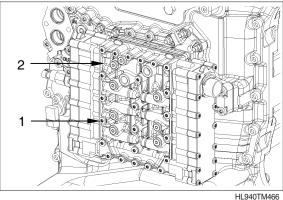

3.06 kgf \cdot m (22.2 lbf \cdot ft)


⁽²⁾ Fit two adjusting screws.


Adjusting screws 5870 204 063

Mount sealing plate (1) and electrohydraulic control unit (2).


 It is not permitted to reassemble the seal plate after opening the threaded joint shift unit/gearbox housing.
 In case of repair it is always necessary to mount a new seal plate.

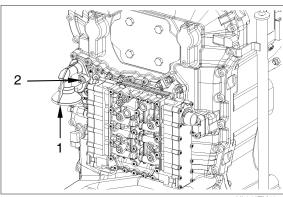


HL940TM464

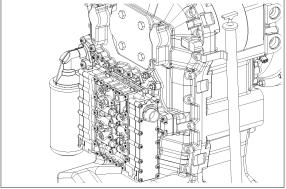
S Fix electro-hydraulic control unit (1) equally by means of Torx screws (2).

\cdot Tightening torque (M6/10.9 $ imes$ 76) :		
0.97 kgf · m (7.03 lbf · ft)		
Socket wrench TX-27	5873 042 002	
Reducing adapter	5870 656 056	

HL940TM466


(2) Fitting of fine filter (pressure filter)

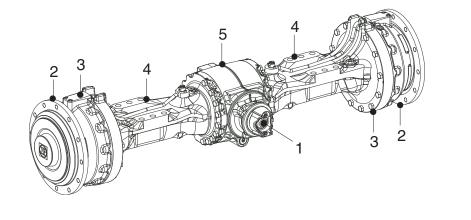
 Fix filter head (1) with new O-rings 34.2×3 to the housing rear part by means of Torx screws (2).


 \cdot Tightening torque (M8/10.9 \times 60) : 3.47 kgf \cdot m (25.2 lbf \cdot ft)

Socket wrench TX-40 5870 042 004

- % The filter is to be installed as follows :
 - Slightly oil the seal
 - Turn in the filter until contact with the sealing surface is obtained, and then tighten it by hand with approx. 1/3 to 1/2 rotation.
- * Before putting the transmission into operation, fill it with oil according to operation manual.

HL940TM467



HL940TM468

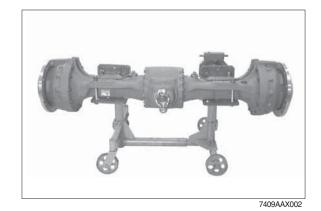
3. AXLE

1) DISASSEMBLY

(1) Output and brake disassembly

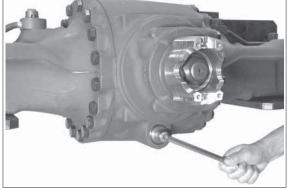
7409AAX001

1 Input

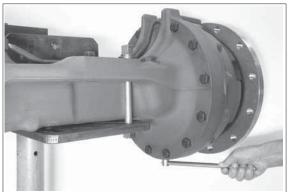

2

Output

- 3 Brake4 Axle housing
- 5 Axle drive housing


① Mount axle on assembly truck.

Assembly truck	5870 350 000
Supporting bracket (2EA)	5870 350 106


② Drain oil from axle.

* Use suitable reservoir-environmental protection.

7409AAX003

- ③ Drain oil from both outputs.
- * Use suitable reservoir-environmental protection.

7409AAX004

Disassembly output assy /brake

For any replacement of components you can remove the output assy (with brake) as one unit.

In this context refer to work steps on figure AX007~AX009 and assembly steps page 3-249~254.

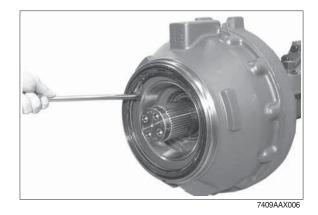
* Please consider, however, that multi discs of the brake must be replaced on both outputs each.

Replacement combi seal ring (output)

* The combi seal ring (output) can also be replaced on the installed axle for this purpose remove output shaft.

For the installation of the combi seal ring, refer to work steps page 3-242~243 (AX303 ~AX305).

Pry bar


5870 345 071

Output /brake

① Disassemble brake tube.

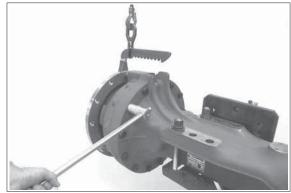
7409AAX005

② Take up output by means of a lifting bracket.

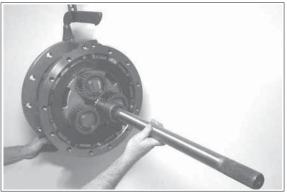
Loosen bolted connection (output /axle housing) and separate output from axle housing.

Pay attention to releasing end plate and multi discs.

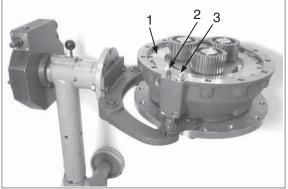
Lifting bracket


5870 281 043

- ③ Remove stub shaft and sun gear shaft.
- * Pay attention to shim (placed in sun gear shaft) and mark allocation of shim to sun gear shaft and output side assembly aid.

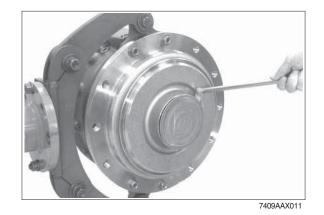

In certain cases the stub shaft /sun gear shaft could get stuck in the axle housing (gearing of axle bevel gear /differential).

④ Mount output assy on assembly truck.
 Remove end plate (1), brake breather valve (2) and screw neck (3).

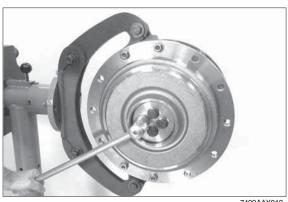

Assembly truck	5870 350 000
Fixture	5870 350 112

7409AAX008

7409AAX009



7409AAX010


5 Remove lid (with O-ring).

Pry bar

5870 345 071

- 6 Loosen locking screws and remove lid.
- * Pay attention to releasing planetary carrier, risk of accident.

7409AAX012

⑦ Lift compl. planetary carrier out of brake housing.

Inner extractor	5870 300 019
Eye nut	5870 204 073

7409AAX013

Snap out retaining ring.Set of external pliers 5870 900 015

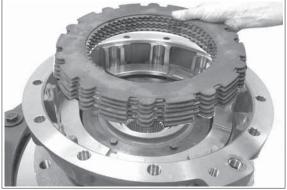
7409AAX014

Pull off planetary gear.
 Disassemble the remaining planetary gears in the same way.

Three armed puller 5870 971 002

I Pull bearing inner ring off the planetary carrier.

5873 003 033


5873 003 001

Grab sleeve

Basic tool

7409AAX016

 ${\scriptstyle \textcircled{0}}$ Take disc package out of brake housing.

7409AAX017

0 Loosen threaded joint.

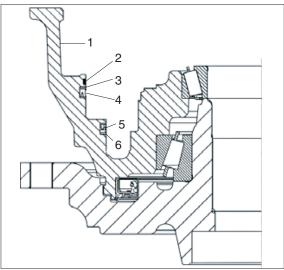
7409AAX018

 ${\ensuremath{\textcircled{}\!\!3}}$ Remove lid, cup spring and disk.

(1) Lift piston off with lever.


Adjusting device

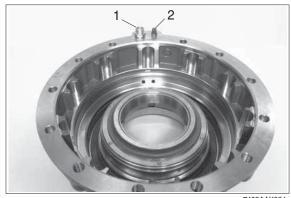
5870 400 001


7409AAX020

(15) Remove sealing elements (arrows also refer to AX022) from annular grooves of brake housing.

7409AAX021

- 1 Brake housing
- 2 Guide ring
- 3 Support ring
- 4 Grooved ring
- 5 Grooved ring
- 6 Support ring


7409AAX022

16 Lift brake housing off the output shaft by means of lifting device.

Lifting chain	5870 281 047
Eyebolts	5870 204 071

Remove screw neck (1) and breather valve (2).

7409AAX024

(B) Lift off shaft seal by lever and remove both bearing outer rings from brake housing, if required.

Pry bar

5870 345 071

7409AAX025


(19) Pull bearing inner ring from output shaft.

Rapid grip	5873 014 016
Basic tool	5873 004 001

7409AAX026

If required, disassemble wear sleeve (arrow) of combi seal ring.

(2) Differential and input disassembly

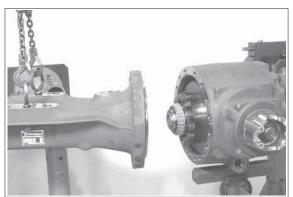
Differential

1 Mount axle on assembly truck.

Assembly truck	5870 350 000
Supporting bracket (2EA)	5870 350 106

7409AAX101

- The following illustration shows the removal of the differential in the course of a complete disassembly of the axle.
 To remove the differential, however, it is possible to separate the axle half assy (axle housing with output) from the axle drive housing.
- Secure axle by means of a support (arrow), risk of accident.
- ② Take up axle housing half on crown wheel side with lifting chain (see AX103) and loosen bolted connection (axle housing /axle drive housing).

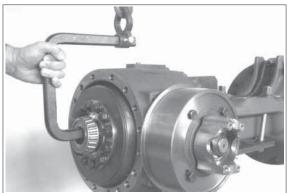

Lifting chain	5870 281 047
Eyebolts	5870 204 071

7409AAX102

- ③ Separate axle housing from axle drive housing.
- * Pay attention to releasing axial roller ring and differential.
- * Pay attention to releasing stub shaft and sun gear shaft with inserted shim (sun gear shaft clearance).

Mark allocation of shim versus sun gear shaft /stub shaft and output side, assembly aid.

7409AAX103

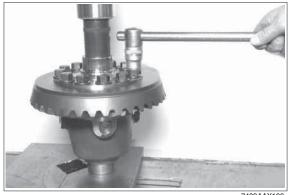

Conventional differential (STD)

- * Description of disassembly and reassembly of the limited slip differential from page 3-218.
- ① Lift differential assy out of axle drive housing.

5870 281 033 Lifting bracket

② Pull both taper roller bearings off the differential carrier.

Grab sleeve	5873 002 035
Basic tool	5873 002 001
Pressure piece	5873 100 047

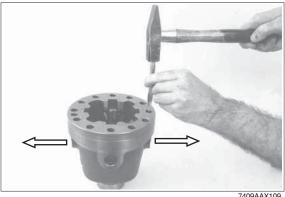


7409AAX104


7409AAX105

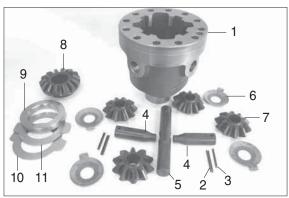
- ③ Hold differential by means of a press. Loosen locking screws and remove lid.
- * Locking screws permitted for one time use only.

7409AAX106


④ Insert some locking screws, position pressure plate and press differential carrier off the crown wheel.

- 5 Remove axle bevel gear, thrust washer and constant spacer.
 - 1 Differential carrier
 - 2 Crown wheel
 - 3 Constant spacer
 - 4 Thrust washer
 - 5 Axle bevel gear
- ⑥ Force slotted pin (fixing) out of both spider shaft halves (split version), then remove both spider shaft halves in arrow direction and take components (see AX110) out of differential carrier.

7409AAX108



7409AAX109

- **Differential carrier** 1
- 2 Slotted pin (2EA)
- Slotted pin (2EA) 3
- Spider shaft (split version) 4
- Spider shaft (one piece) 5
- Spider gear (4EA) 6
- Thrust washer (4EA) 7
- Axle bevel gear 8
- Constant spacer 9
- 10 Outer disc
- Thrust washer 11
- ⑦ Pull bearing outer ring out of hole by means of the striker and remove shim behind (backlash).
- * Mark shim (position /bearing allocation) assembly aid.

Striker

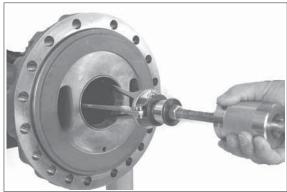
5870 650 004

7409AAX110

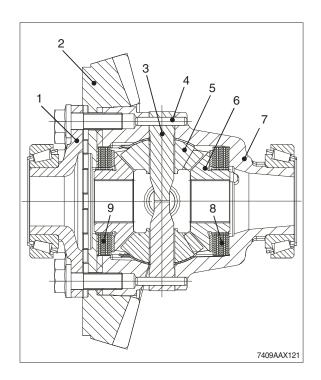
7409AAX111

(8) Remove O-ring (arrow).

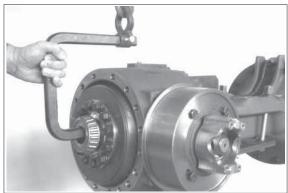
Remove bearing outer ring and shim behind (rolling torque differential bearing) from axle housing.


Mark shim (position/bearing allocation), assembly aid.

Striker


5870 650 004

Limited slip differential (option)


- 1 Housing cover
- 2 Crown wheel
- 3 Spider shaft (split version) (2EA)
- 4 Double slotted pins $(5 \times 50 \text{ and } 8 \times 50 \text{ mm})$
- 5 Spider gear
- 6 Axle bevel gear
- 7 Differential carrier
- 8 Disk package "A"
- 9 Disk package "B"

7409AAX112

① Use the lifting device to lift the differential out of the axle drive housing.

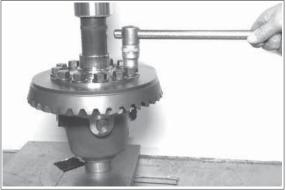
2 Pull the tapered roller bearing from the housing cover /differential carrier.

5873 002 035

5873 002 001

5873 100 047

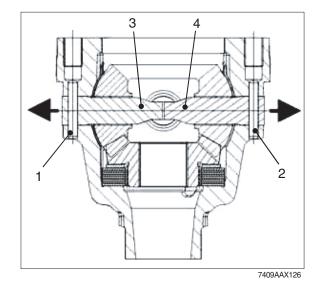
Grab sleeve


Pressure piece

Basic tool

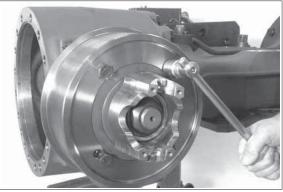
1000	
ALL ALL	
Ct- P	
The second se	

7409AAX123


③ Use the press to fix the differential; loosen the locking screws and remove the cover.

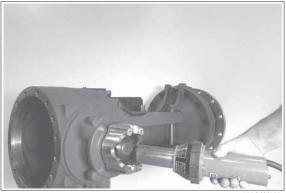
7409AAX124

- ④ Mount some locking screws, position the pressure plate and press the differential carrier from the crown wheel. Remove the releasing disk package, thrust washer and axle bevel gear.
- 7409AAX125


⑤ Force the double slotted pins out (position 1 and 2) and pull the spider shafts (position 3 and 4) in direction of arrow out of the holes. Then remove the remaining single parts.

Input

For axle version with pivot bearing only (see AX128)

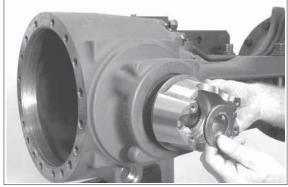

 Loosen bolted connection and pull off bearing flange.

7409AAX128

② Heat up hex nut (loctite locking compound) by means of hot air blower disassembly aid.

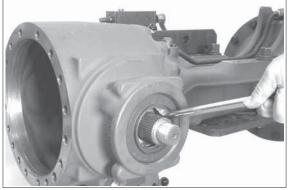

Hot air blower 230 V	5870 221500
Hot air blower 115 V	5870 221501

7409AAX129


- ③ Fix input flange by means of a clamping fork, loosen hex nut.
- A Secure axle by means of a support, risk of accident.

Clamping fork 5870 240 025

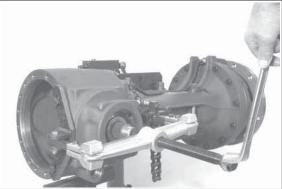
7409AAX130


④ Remove disc and pull off flange.
 Remove screen sheet from output flange, if required.

5 Lift shaft seal off.

Pry bar

5870 345 071



7409AAX132

⁽⁶⁾ Press input pinion out by means of press off tool and remove releasing bearing inner ring.

Press-off tool

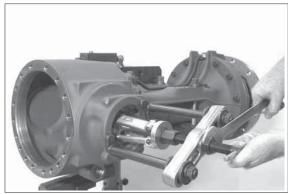
5870 280 044

7409AAX133

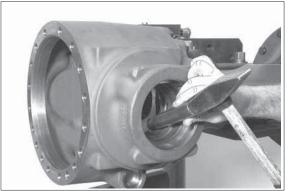
 $\ensuremath{\textcircled{}}$ Remove spacer ring from pinion.

7409AAX134

 $\circledast\,$ Pull bearing inner ring off the pinion.

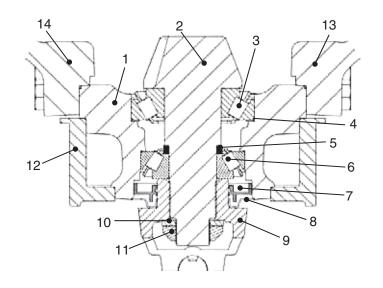

Grab sleeve	5873 012 013
Basic tool	5873 002 001

9 Pull-off outside bearing outer ring.


Internal extractor
Counter support

5870 300 019 5870 300 020

7409AAX136


- In Force bearing outer ring out of inner bearing hole, pay attention to shim behind (contact pattern/bevel gear set).
- * Mark shim (thickness/position and bearing allocation), assembly aid.

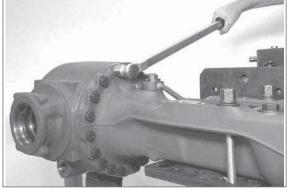
7409AAX137

2) ASSEMBLY

(1) Input assembly

7409AA201

- 1 Axle drive housing
- 2 Input pinion
- 3 Tapered roller bearing
- 4 Shim for contact pattern (bevel gear set)
- 5 Spacer ring (bearing roller torque/ pinion bearing)
- 6 Tapered roller bearing
- 7 Shaft seal

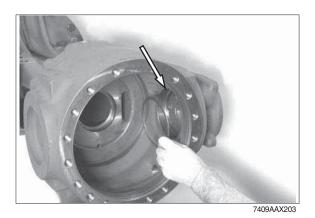

- 8 Protection plate
- 9 Input flange
- 10 Disc
- 11 Hexagon nut
- 12 Bearing flange (only for axle version with pivot bearing)
- 13 Axle housing/ part I
- 14 Axle housing/ part II (crown-wheel side)
- Depending on the version, crown wheel and bevel pinion may be mounted as a bevel gear set (for production reasons, crown wheel and pinion are paired and show an identical pairing number see AX204) or as single parts, the respective version has to be taken from the specification of the corresponding spare parts list.

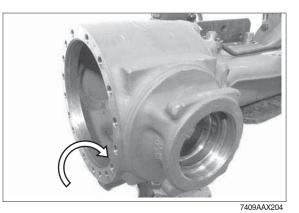
If a bevel gear set is specified, the crown wheel must only be replaced together with the pinion.

Only for assembly of new parts or if disassembled :

Mount O-ring on axle housing /part I and install axle drive housing, pay attention to radial installation position.

 \cdot Tightening torque (M18 \times 1.5/10.9) : 39.8 kgf \cdot m (288 lbf \cdot ft)


Determine shim for pinion position required to obtain an optimum contact pattern on the bevel gear set (crown wheel /pinion):


- We recommend to reinstall the shim found during disassembly (e.g. "S" = 1.20 mm, see disassembly instructions, page 3-222, AX137) into the inner bearing hole /pinion bearing.
- * The contact pattern required on the bevel gear set, however, is decisive. If this is not achieved, see contact pattern check on page 3-234, AX237, correct the pinion position with a corresponding shim.
- * As an alternative, a basic setting of the required pinion position can be made, e.g. when assembling a new part, as shown below (see AX204~AX206).

Basic setting of pinion position :

 Read dimension "I" = production dimension /axle drive housing (from axle center to bearing contact /inner bearing hole) from the axle drive housing (position, see arrow).

Dimension I e.g. 182.81 mm

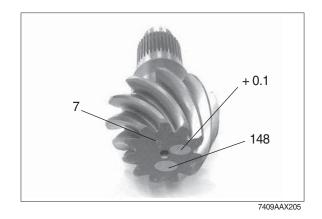
2 Read pinion dimension "X" (pinion basic dimension e.g. = 148) from pinion, or determine it in case of a + or - deviation from pinion dimension due to production (value concerned is marked by hand on the pinion, e.g.+ 0.1).

Pinion dimension "X" (without + or deviation value) = 148.0 mm Pinion dimension "X" with indication of + 0.1 deviation = 148.1 mm Pinion dimension "X" with indication of -0.1 deviation = 147.9 mm

Dimension II (pinion dimension X) e.g. 148.00 mm

- * Pairing number e.g. 7 only for version with bevel gear set, see note AX201.
- ③ Determine dimension "III" bearing width, ensure here that the rollers are located without any play (rotate bearing inner ring in both directions several times, roller setting).

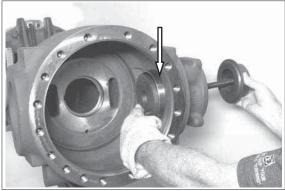
Since the installed roller bearing is subject to a pre-load in installation position, deduct an experience value of -0.05 mm.


Dimension III = e.g. 33.67 mm - 0.05 mm \rightarrow 33.62 mm

CALCULATION EXAMPLE :

Dimension I	182.81 mm
Dimension II + III (148.00 + 3	3.62)
	-181.62 mm
Result	= 1.19 mm
Required shim "S"	ightarrow 1.20 mm

Insert determined shim into the hole of the axle drive housing, see AX203.


Digital depth gauge	5870 200 072
Gauge blocks	5870 200 066

④ Undercool bearing outer ring (see arrow) and bring it into contact position in the inner bearing hole /pinion bearing by means of the fixture.

Assembly fixture 5870 345 049

7409AAX207

⑤ Install outside bearing outer ring /pinion bearing.

Assembly fixture 5870 345 049

7409AAX208

⁽⁶⁾ Mount heated bearing inner ring until contact position and adjust after cooling down.



Set rolling torque of input pinion bearing $0.11 \sim 0.23 \text{ kgf} \cdot \text{m} (0.81 \sim 1.70 \text{ lbf} \cdot \text{ft})$ (without shaft seal) :

- \bigcirc Mount spacer ring (s = optional).
- We recommend to reinstall the spacer ring found during disassembly (e.g. s = 8.7 mm).

If the originally installed shim was replaced (contact pattern /bevel gear set), see page 3-213, AX203, also install a spacer ring adjusted by the same correction value.

- * The required bearing rolling torque of 0.11~0.23 kgf · m (0.81~1.70 lbf · ft) (without shaft seal), however, is decisive, in case it is not achieved, see bearing rolling torque check (see AX213), correct the bearing rolling torque with a corresponding shim.
- ⑧ Insert preassembled input pinion, mount heated bearing inner ring until contact is obtained.


 7409AX211

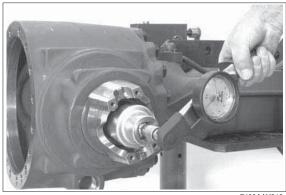
- (9) Mount flange, fix with disc and hex. nut.
- While tightening, rotate pinion in both directions several times (roller setting).

 \cdot Tightening torque (M36 \times 1.5) : 71.4 kgf \cdot m (516 lbf \cdot ft)

Clamping fork

5870 240 025

- Check rolling torque of the pinion bearing.
 Bearing rolling torque (without shaft seal) : 0.11~0.23 kgf · m (0.81~1.70 lbf · ft).
 Try to achieve upper value.
- In case of a deviation from the required rolling torque correct it with a corresponding spacer ring (see AX210, page 3-227).

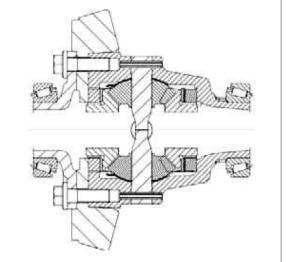

 Torque wrench
 5870 203 031

 Reducing adapter 1/4" to 1/2"
 5870 656 056

 Reducing adapter 1/2" to 3/4"
 5870 656 056

5870 656 057

For assembly of shaft seal stick to description in page 3-184 (after completed differential assembly and positive contact pattern check).

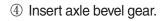


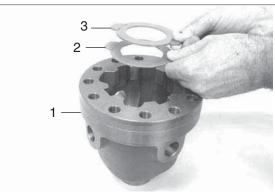
7409AAX213

(2) Differential assembly

Conventinaol differential (STD)

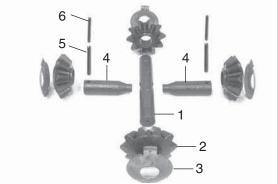
- ① Illustration in figure AX214 shows conventional differential.
- * Description of the reassembly of the limited slip differential from page 3-181.



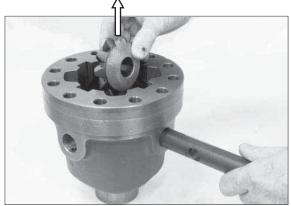

7409AAX214

② Insert constant spacer into differential carrier.

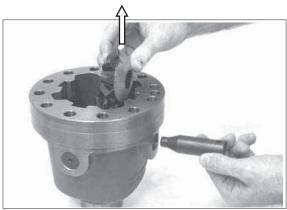
- ③ Insert steel outer disc (2) and thrust washer (3) into the differential carrier (1)
- * Pay attention to installation position of outer disc and thrust washer see position/figure.



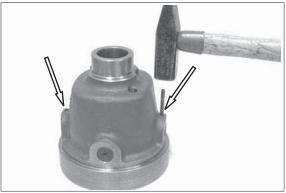
7409AAX216


7409AAX217

- (5) Differential spider single parts :
 - 1 Spider shaft (one part)
 - 2 Spider gear (4EA)
 - 3 Thrust washer (4EA)
 - 4 Spider shaft (split version)
 - 5 Slotted pin (2EA)
 - 6 Slotted pin (2EA)


7409AAX218

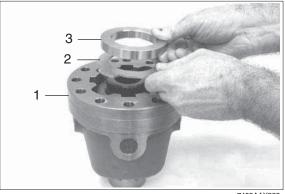
- ⑥ Insert one part spider shaft (1) into hole / differential (without slotted pin location hole) thereby mounting two spider gears (2) with thrust washers (3).
- * Insert thrust washers with tabs showing upwards (see arrow) and being located in recess.



7409AAX219

- ⑦ Install split spider shaft (4) with spider gears (2) and thrust washers (3).
- * Insert thrust washers with tabs showing upwards (see arrow) and being located in recess.
- * Pay attention to installation position of spider shaft/ halves-slotted pin/location holes of spider shaft towards differential carrier.
- ⑧ Fix spider shaft half (arrows) with double slotted pins.
- * Install double slotted pins, always with slots in a 180° offset position to each other.

7409AAX220

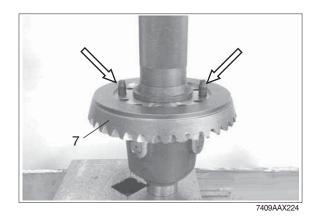

7409AAX221

Insert second axle bevel gear into differential carrier.

7409AAX222

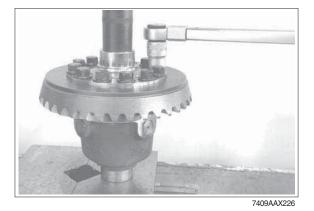
- Insert thrust washer (2) and constant spacer (3) into differential carrier (1).
- * Pay attention to installation position of thrust washer and constant spacer, see position /figure.

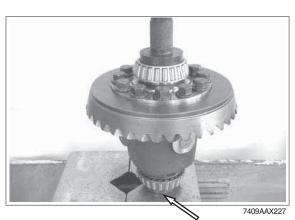
7409AAX223


Install two adjusting screws (M16) (see arrows) and press crown wheel to contact position.

For input version with bevel gear set only, see specification in the corresponding spare parts list :

If a bevel gear set is specified, the pairing number/crown wheel (e.g. "7") must be identical with pairing number/ input pinion (also refer to note on page 3-225, AX205).

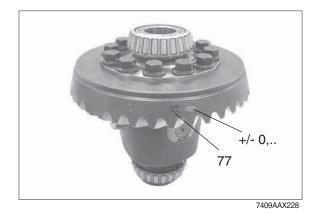

Adjusting screws (M16 × 1.5) 5870 204 040

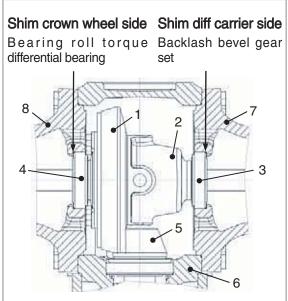

1 Mount housing lid.

- ③ Fix differential by means of a press and fix lid with new locking screws.
- * Locking screws permitted for one time use only.
 - \cdot Tightening torque (M16 \times 1.5/12.9) : 42.8 kgf \cdot m (302 lbf \cdot ft)
- Press both bearing inner rings to contact position.
- * Use suitable support (arrow) for provisionally mounted bearing ring, roller bearing cage, risk of damage.

Determine shims for bearing rolling torque /differential bearing and backlash /bevel gear set

Is Read crown wheel labeling (test dimension) from crown wheel rear side.

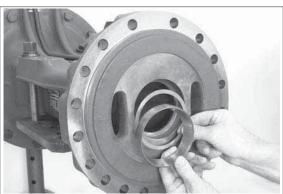

Determine required shims by means of the read value (crown wheel) and the relating specifications of the following table :


Test dimension, e.g. "77" mm is stamped on the crownwheel rear side, without + or - deviation, which corresponds to the real value/test dimension "77" in the following table. The required shims according to this real value /test dimension are allocated in the following table.

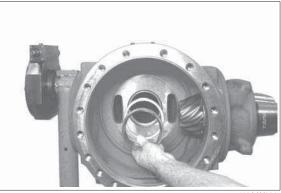
(6) Any + or - deviation from the test dimension due to production is manually applied on the crown wheel rear side (e.g. - 20 or - 10 or 10).

The required shims according to this real value /test dimension are allocated in the following table.

- 1 Crown wheel
- 2 Differential carrier
- 3 Tapered roller bearing (crown wheel side)
- 4 Tapered roller bearing (differential carrier side)
- 5 Input pinion
- 6 Axle drive housing
- 7 Axle housing
- 8 Axle housing


Shims for differential				
Crown wheel marking	- 20	- 10	-	10
Deviation	- 0.2	- 0.1	0	0.1
Shim / Differential cage side Shim thickness	0.8	0.9	1.0	1.1
Shim	ZGAQ-02566	ZGAQ-02567	ZGAQ-02568	ZGAQ-02569
Shim / Crown wheel side Shim thickness	1.2	1.1	1.0	0.9
Shim Conventional, Limited slip	ZGAQ-02570	ZGAQ-02569	ZGAQ-02568	ZGAQ-02567

- Insert determined shim (e.g. s = 1.00 mm) and bearing outer ring into hole of axle housing on crown wheel side.
- * Observe allocation of shim regarding installation position.


Driver tool	5870 058 021
Handle	5870 260 002

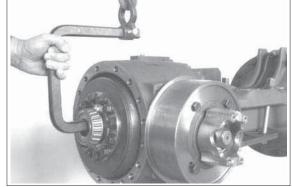
- (B) Insert determined shim (e.g. s = 1.00 mm) and bearing outer ring into hole of axle housing on differential carrier side.
- * Observe allocation of shim regarding installation position.

Driver tool	5870 058 021
Handle	5870 260 002

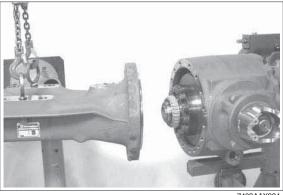
7409AAX230

7409AAX231

Contact pattern check of bevel gear set :


① Cover some tooth flanks of crown wheel with marking ink (contact pattern check).

② Insert preassembled differential.


Lifting bracket

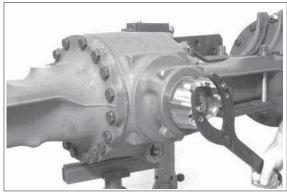
5870 281 033

② Position axle housing of crown wheel side (without O-ring) on axle drive housing, pay attention to radial installation position.

Lifting chain	5870 281 047
Eyebolts	5870 204 071

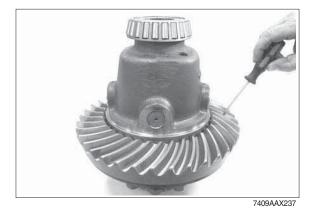
7409AAX234

- Bring axle housing to contact position with hexagon screw and fix temporarily.
 Rotate differential several times in both directions, roller setting (also see AX236).
 - Tightening torque (M18/10.9) : 39.8 kgf · m (288 lbf · ft)



7409AAX235

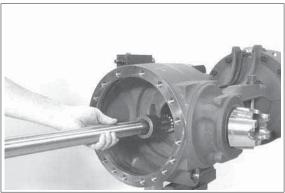
② Roll input pinion over crown wheel in both directions (coast-drive flank meshing-contact pattern).


Clamping fork

5870 240 025

7409AAX236

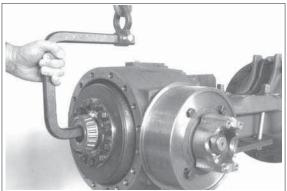
- Disassemble differential.
 Compare contact pattern.
- If contact pattern differs considerably, use a suitable shim for correction (see AX203, page 3-224).


 \circledast If disassembled :

Insert shim(s) (2) into sun gear shaft (1) and mount stub shaft (3).

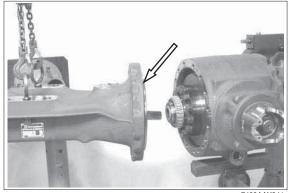
- If position was not allocated, as specified in disassembly instructions on AX103, sun gear shaft clearance (see AX330~AX334) must be set on both output sides.
- (b) Insert preassembled stub shafts into both outputs (considering allocation to the correct output side).

7409AAX238



7409AAX239

② Remount differential by mounting stub shaft into gearing of axle bevel gear (differential).


Lifting bracket

5870 281 033

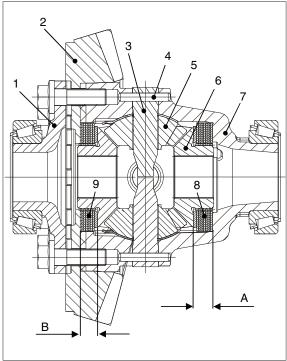
- Oil O-ring (arrow) and mount it. Position complete axle half on the axle drive housing by mounting the stub shaft into the gearing of the axle bevel gear (differential).
- * Pay attention to radial installation position of output towards axle drive housing.

Lifting chain	5870 281 047
Eyebolts	5870 204 071

7409AAX241

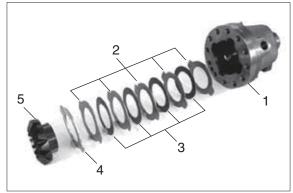
② Fix axle housing finally by means of hexagon screws.

Rotate differential several times in both directions roller setting.


 Tightening torque (M18/10.9) : 39.8 kgf · m (288 lbf · ft)

7409AAX242

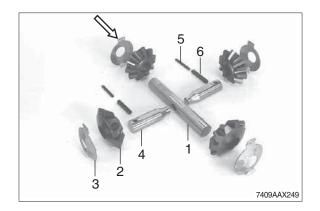
(3) Limited slip differential (OPT) assembly

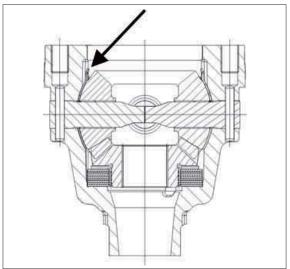

- 1 Housing cover
- 2 Crown wheel
- 3 Spider shaft (split version) (2EA)
- 4 Double slotted pins
 - $(5 \times 50 \text{ and } 8 \times 50 \text{ mm})$
- 5 Spider gear
- 6 Axle bevel gear
- 7 Differential carrier
- 8 Disk package "A"
- 9 Disk package "B"
- A Installation dimension = 18.6 0.2 mm
- B Installation dimension = 16.7 0.2mm

7409AAX247

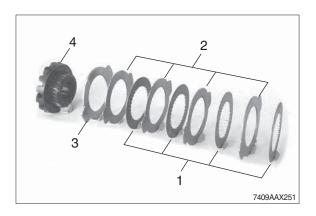
- ① Mount the single parts as indicated on the figure right.
 - 1 Differential carrier
 - 2 5 outer disks (optional)
 - 3 4 inner disks
 - 4 Thrust washer (brass)
 - 5 Axle bevel gear
- Determine the installation dimension "A"= 18.6 - 0.2mm with the different outer disks (s =1.8~2.0 mm), see also AX247. Pay attention to the disk arrangement, AX248.

Oil the single parts.

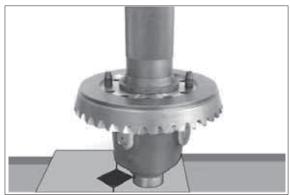



② Mount the single parts, see AX249 and AX250.

Single parts differential spider :

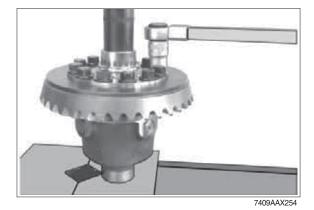

- 1 Spider shaft (one piece)
- 2 Spider gear (4EA)
- 3 Thrust washer (4EA)
- 4 Spider shaft (two pieces)
- 5 Slotted pins (2 pieces, 5×50 mm)
- 6 Slotted pins (2 pieces, 8×50 mm)
- ③ Pay attention to the radial installation position of the thrust washers (3). The torsional stop must show upwards, see arrow /AX250.

The two spider shafts (4) are fixed by means of double slotted pins (5 and 6). Thereby mount the slots of the slotted pins 180° offset to each other.

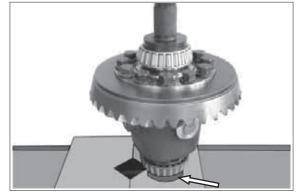


- ④ Mount the single parts as indicated on the figure right.
 - 1 4 inner disks
 - 2 4 outer disks (optional)
 - 3 Thrust washer (brass)
 - 4 Axle bevel gear
- Determine the installation dimension ("B" = 16.7 - 0.2 mm) with the different outer disks =1.8~2.0 mm), see also AX247.
 Pay attention to the disk arrangement, see AX251.
 Oil the single parts.

(5) Mount two adjusting screws and press the crown wheel until contact is obtained.


7409AAX252

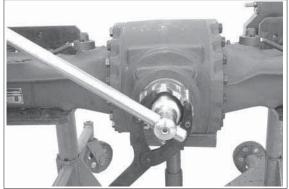
6 Mount the housing cover.



7409AAX253

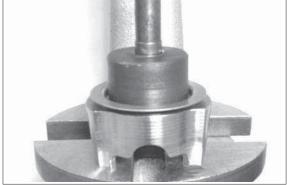
- ⑦ Bolt housing cover, crown wheel and differential housing.
 - \cdot Tightening torque (M16 \times 1.5/12.9) : 42.8 kgf \cdot m (302 lbf \cdot ft)
- * It is only permitted to use new locking screws.

- ③ Press both bearing inner rings until contact position is obtained.
- Support the lower tapered roller bearing appropriately (arrow), pay attention that the roller cage is not damaged.
- * Description of differential reassembly from page 3-232.



(4) Shaft seal /input flange assembly

① Remove flange.


Clamping fork

5870 240 025

7409AAX289

- ② For new parts assembly only : Mount protection plate on screen sheet on input flange and bring to contact position.
- * Pay attention to installation position of screen sheet also see AX292.

7409AAX290

③ Insert shaft seal (1), considering the required installation position (dimension "X") see detailed AX292.

Contact face (outer diameter) of shaft seal:

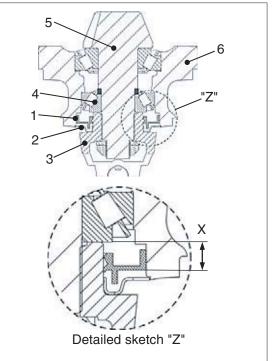
- if rubber - coated :

wet with spirit (assembly aid)

- if made of metal :

apply sealing agent (loctite no. 574) Grease the shaft seal around the sealing and dust lip.

* Ensure plane installation position of shaft seal use the specified driver tool to obtain an exact installation position of the shaft seal.



7409AAX291

Driver tool

5870 048 225

- 1 Shaft seal
- 2 Protection plate
- 3 Input flange
- 4 Tapered roller bearing
- 5 Input pinion
- 6 Axle drive housing
- X = Install. dimension 16.6 \pm 0.2 mm

7409AAX292

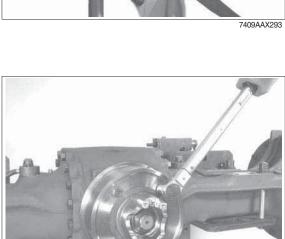
7409AAX294

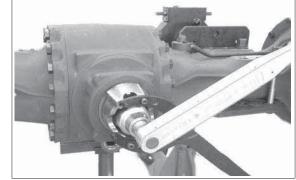
④ Mount flange, fix with washer and hexagon nut.

During tightening, rotate pinion several times in both directions (roller setting).

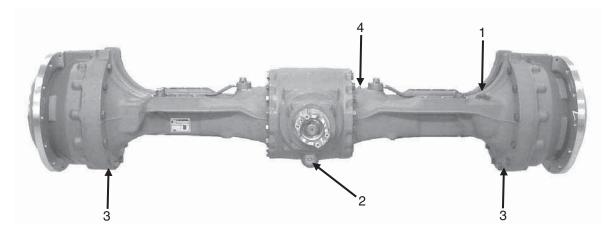
* Install hexagon nut with locking compound (loctite #262).

 \cdot Tightening torque (M36 \times 1.5) : 71.4 kgf \cdot m (516 lbf \cdot ft)


Clamping fork 5870 240 025


(5) Pivot bearing assembly

For version with pivot bearing only (AX294):


Mount bearing flange and fix with hexagon screws.

 \cdot Tightening torque (M14/10.9) : 18.7 kgf \cdot m (136 lbf \cdot ft)

(6) Oil dipstick, drain plugs and breather valve assembly

7409AAX295

- 1 Oil dipstick
- 2 Drain plug /axle drive housing(Axle version with pivot bearing is fitted with another drain plug)
- 3 Drain plug/output
- 4 Depending on version Breather valve or screw plug

Provide oil dipstick and drain plugs with new O-ring and install them. Mount breather valve or screw plug, depending on version.

Tightening torque

 $\begin{array}{l} \mbox{Oil dipstick } (M36 \times 1.5): 5.1 \mbox{ kgf } \cdot \mbox{ m } (36.9 \mbox{ lbf } \cdot \mbox{ ft}) \\ \mbox{Drain plug } (M36 \times 1.5): 5.1 \mbox{ kgf } \cdot \mbox{ m } (36.9 \mbox{ lbf } \cdot \mbox{ ft}) \\ \mbox{Drain plug } (M24 \times 1.5): 5.1 \mbox{ kgf } \cdot \mbox{ m } (36.9 \mbox{ lbf } \cdot \mbox{ ft}) \\ \mbox{Breather valve /screw plug } (M10 \times 1): 0.6 \mbox{ kgf } \cdot \mbox{ m } (4.4 \mbox{ lbf } \cdot \mbox{ ft}) \\ \end{array}$

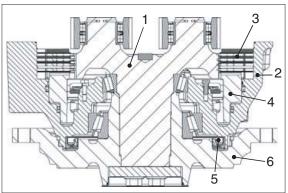
(7) Output and brake assembly

- 1 Planetary carrier
- 2 Brake housing
- 3 Disc package
- 4 Piston

plugs.

Hand tool

Ratchet wrench


- 5 Combi seal ring
- 6 Output shaft

Assembly truck	5870 350 000
Fixture	5870 350 112

Close apertures of oil supply holes with

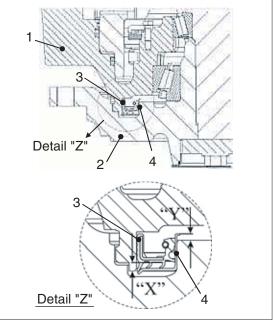
5870 320 014

5870 320 018

7409AAX301

7409AAX302

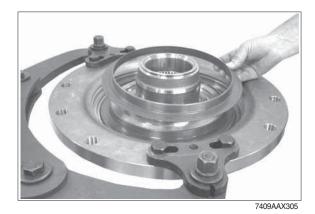
Installation combi seal ring


- Mount shaft seal (part I /combi seal ring) considering installation dimension "X", see detailed sketch AX304.
- Wet contact faces of shaft seal /brake housing with spirit right before assembly, assembly aid.
- * Grease shaft seal around the dust and sealing lips.
- * Observe plane installation position of shaft seal, use the specified driver to ensure an exact shaft seal installation position.

Driver tool

5870 051 065

- 1 Brake housing
- 2 Output shaft
- 4 Wear sleeve (part II) seal ring
- "X" = installation dimension /shaft seal 4.1 + 0.2 mm
- "Y" = installation dimension /wear sleeve 2.6 + 0.2 mm



7409AAX304

② Apply sealing agent (loctite #574) on contact faces of wear sleeve /output shaft and mount wear sleeve (part I / combi seal ring) considering installation dimension "Y" see detailed AX304.

Pressing device 5

5870 506 172

Output shaft /brake housing

- ① Mount heated bearing inner ring until contact.
- * Adjust bearing inner ring after cooling down.

7409AAX306

② Press outside bearing outer ring into brake housing until contact.

Driver tool 5870 050 010

7409AAX307

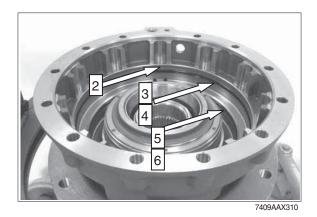
③ Press inside bearing outer ring into brake housing until contact.

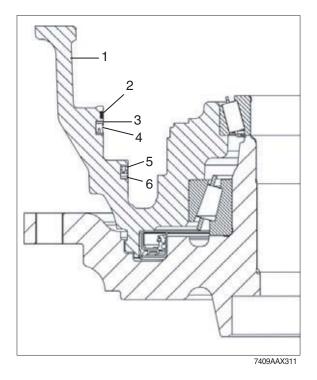
Driver tool

5870 050 003

7409AAX308

④ Position preassembled brake housing on the output shaft.


Lifting chain	5870 281 047
Eyebolts	5870 204 071


- ⑤ Insert sealing elements (arrows) into annular grooves of brake housing paying attention to installation position and arrangement, in this context refer to AX311.
- * Guide ring installation :

Clean annular groove of brake housing with spirit. Then insert guide ring into annular groove - Ensure an exact contact position of the whole guide ring circumference - afterwards stick guide ring with glue (loctite #415) on its endpoints.


Ensure a correct installation position of the guide ring - Endpoints of guide ring to be in 12 o'clock position in the axle installed in the vehicle (radial position in brake housing - area of brake oil supply and vent hole).

- 1 Brake housing
- 2 Guide ring
- 3 Support ring
- 4 Grooved ring
- 5 Grooved ring
- 6 Support ring

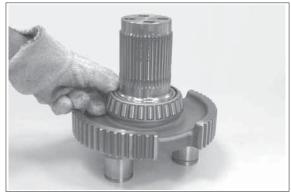
⑥ Flush-mount slotted pins (for installation position refer to arrow) into the piston, if not disassembled, adjust adequately (flushfitting).

7409AAX312

⑦ Oil sealing/sliding surface of piston and sealing elements.

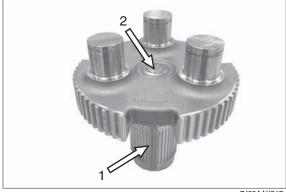
Carefully bring piston in contact position.

7409AAX313


- ⑧ Insert disc, cup spring and lid considering the installation position, see detail sketch.
 - 1 Disc
 - 2 Cup spring
 - 3 Lid
 - 4 Hexagon screw
 - 5 Brake housing
 - 6 Piston
 - 7 Slotted pin

- 9 Fix lid with hexagon screws evenly until contact is obtained (cup spring pre load).
 Finally tighten hexagon screws.
 - \cdot Tightening torque (M8/10.9) : 3.47 kgf \cdot m (25 lbf \cdot ft)

- Mount heated bearing inner ring until contact.
- * Adjust bearing inner ring after cooling down.



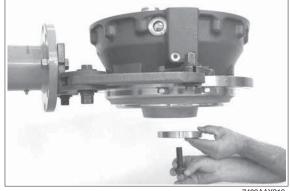
7409AAX316

Image: Apply anti-corrosive agent on spline (arrow 1).

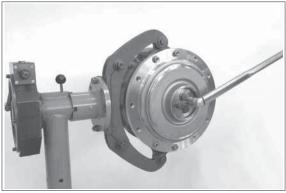
Only for assembly of a new planetary carrier or if disassembled :

Insert shim (arrow 2) into planetary carrier until contact.

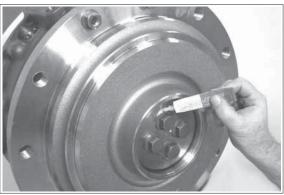
7409AAX317


1 Insert pre assembled planetary carrier.

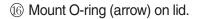
Lifting chain	5870 281 047
Lifting device	5870 281 082


7409AAX318

- ⁽³⁾ Fix planetary carrier with disc and new locking screws.
- * Do not reuse locking screws, just one time installation is permitted.



- ④ Evenly tighten locking screws crosswise while rotating the brake housing in both directions several times (roller setting).
 - \cdot Tightening torque (M8/12.9) : 51.0 kgf \cdot m (369 lbf \cdot ft)

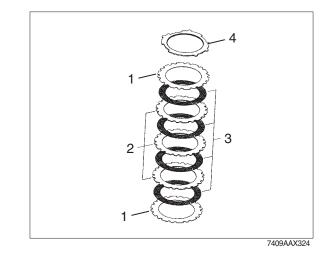

⑤ Apply a screw safety marking paint on correctly installed locking screws.

7409AAX320

7409AAX321



Insert pre-assembled lid into output shaft.

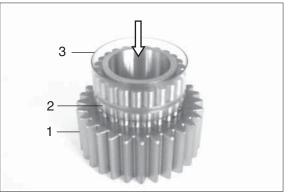

Plastic hammer

5870 280 004

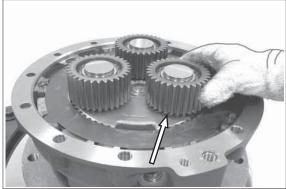
Brake

- ** Possible other versions could have a deviating equipment (number and arrangement of single discs), the illustration in the relating spare parts list forms the basis for the required equipment.
 - 1 Outer disc s = 2.0 mm
 - 2 Outer disc s = 4.0 mm
 - 3 Inner disc (lined disc)
 - 4 End plate
- Insert disc package, considering disc arrangement and installation position of outer discs, see AX324.

7409AAX325


- ② Insert end plate (item 4, see AX324) fix by means of grease assembly aid.
- Ensure radial installation position driving tabs of end plate must be positioned in recessed grooves of the brake housing.

Locating screw 5870 204 078


- Make leakage test on brake hydraulics see page 3-243.
- ③ Only for assembly of new parts : Install cylindrical roller bearing into planetary gear by pressing roller bearing into planetary gear by means of assembly sleeve (arrow) until snap ring engages into annular groove of planetary gear.
 - 1 Planetary gear
 - 2 Roller bearing (with bearing inner ring /cylindical rollers /axial discs and snap ring)
 - 3 Assembly sleeve

7409AAX326

- ④ Heat up planetary gears and mount to the pin of the planetary carrier until contact is obtained, with the large radius /bearing inner ring showing downwards (arrow).
- * Adjust bearing after cooling down.

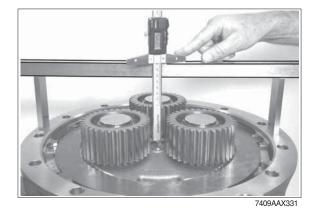
7409AAX328

- 5 Fix planetary gears with retaining ring.
- * Check contact position of retaining ring on groove base and readjust, if required.

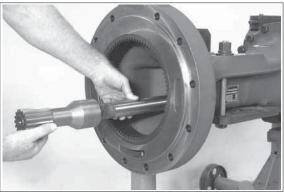
Set of external pliers 5870 900 015

7409AAX329

Axial play setting of sun gear shaft :


- 1 Planetary carrier
- 2 Stop pin
- 3 Brake housing
- 4 Axle housing
- 5 Sun gear shaft
- 6 Shim (s = optional)
- 7 Stub shaft

"X" = axial play - sun gear shaft 0.5~2.0 mm

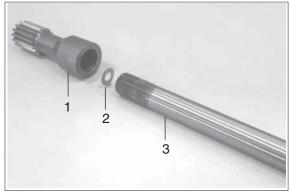

7409AAX330

 Determine dimension "I" from mounting face (brake housing/axle housing) to stop pin.

Dimension I e.g	21.25 mm
Digital-depth gauge	5870 200 072
Gauge blocks	5870 200 066
Straightedge	5870 200 022

② Mount stub shaft with fitted sun gear shaft (without shim) into differential /axle bevel gear until contact.

7409AAX332

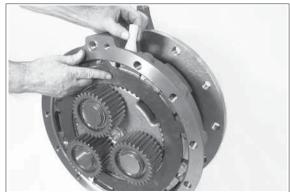

③ Determine dimension "II" from mounting face (brake housing /axle housing) to front face /sun gear shaft.

Dimension II e.g.	. 19.00 mm	
CALCULATION EXAMPLE:		
Dimension I	. 21.25 mm	
Dimension II	- 19.00 mm	
Difference	2.25 mm	
Required axial play e.g. (average)		
	- 1.25 mm	
Result = shim required e.g.	s = 1.00 mm	

7409AAX333

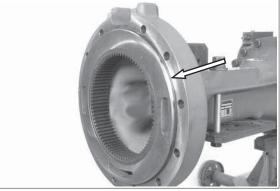
④ Pull stub shaft with sun gear shaft out of axle housing.

Insert determined shim(s) (2) into sun gear shaft (1) and mount stub shaft (3).


7409AAX334

Assemble output assy

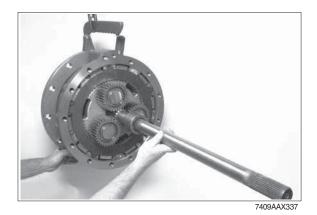
① Fix disc package by means of locating screw, assembly aid.


Locating screw

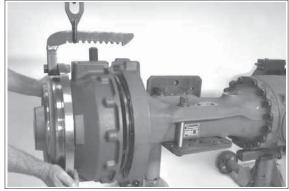
5870 204 078

7409AAX335

② Oil O-ring and mount on collar of axle housing.

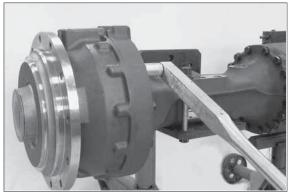


7409AAX336


③ Take up output by means of lifting bracket.

Mount pre-assembled sun gear /stub shaft into teeth of planetary gears.

Lifting bracket 5870 281 043



- ④ Bring output assy into contact position with axle housing by mounting the stub shaft into the gearing of the axle bevel gear /differential.
- * Pay attention to end plate see AX326, page 3-249.

(5) Connect output with axle housing evenly by means of hex. screws.

 \cdot Tightening torque (M18 \times 1.5/10.9) : 39.8 kgf \cdot m (288 lbf \cdot ft)

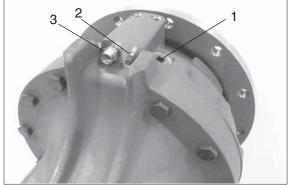
7409AAX339

⑥ Install screw plug (1) with new O-ring.

· Tightening torque (M24 \times 1.5) :

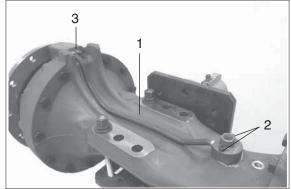
5.1 kgf \cdot m (36.9 lbf \cdot ft)

Mount breather valve (2).


· Tightening torque :

0.6 kgf · m (4.4 lbf · ft)

Install screw neck (3) with new O-ring.


· Tightening torque :

3.7 kgf \cdot m (26.6 lbf \cdot ft)

7409AAX340

⑦ Install brake tube (1).

Make leakage test on brake hydraulics

* Prior to starting the test, completely breathe brake hydraulics.

High pressure test :

Build up testing pressure p = 100 - 10bar maximum and close connection to HP pump by means of a shutoff valve A pressure drop by maximum 3% (3 bar) is permissible during a 5 minute test duration.

Low pressure test :

Reduce testing pressure to p = 5 bar and close shut off valve again.

No pressure drop is permitted during a 5-minute test duration.

Test medium : SAE 15W-40

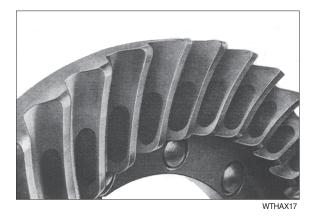
 HP-pump
 5870 287 007

 Straight screw-in connection
 0637 842 518

 Measuring fitting (M18 × 1.5)
 5870 950 139

 Oil collector bottle
 5870 286 072

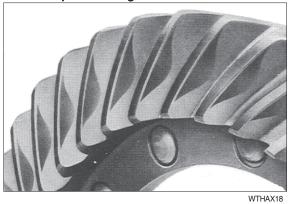
7409AAX342


*** BACKLASH CHECK**

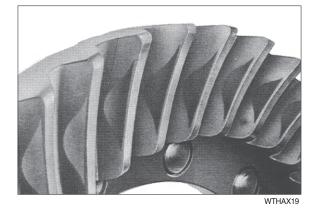
- Applied the paint (or red lead) on the surface of several bevel gear teeth.
- Turn the pinioin gear and check the contact pattern.

Correct pattern

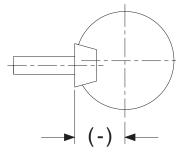
Concave side

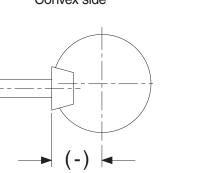


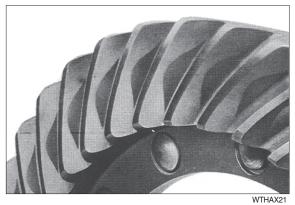
Convex side

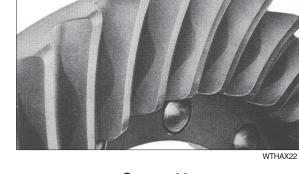

*** ADJUSTMENT**

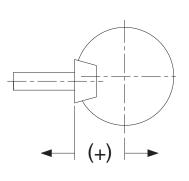
Incorrect pattern : high contact

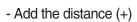

- Reduce the distance (-)


Concave side


Convex side


WTHAX20


Incorrect pattern, low contact


Concave side

Convex side

WTHAX23

